Reviews

Research progress of polymer gel electrolytes in electrochromic devices

  • LI Xiaobai ,
  • YU Shuang ,
  • LI Yao
Expand
  • 1. School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China;
    2. Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China

Received date: 2020-07-09

  Revised date: 2020-11-19

  Online published: 2021-12-21

Abstract

The electrolyte is an important component in the electrochromic devices (ECD), to provide the necessary compensation ions for the electrochromic reactions, and its performance directly affects the response speed, the optical contrast, and the cycle life of the ECD. The polymer gel electrolytes are widely used in the ECD because of the ease of processing and packing, as well as the good ionic conductivity. This paper reviews the research progress of polymer gel electrolytes for the ECD, especially, the applications, the problems and the development proposals of the novel ionic gel and polyionic gel electrolytes in the ECD.

Cite this article

LI Xiaobai , YU Shuang , LI Yao . Research progress of polymer gel electrolytes in electrochromic devices[J]. Science & Technology Review, 2021 , 39(22) : 57 -64 . DOI: 10.3981/j.issn.1000-7857.2021.22.007

References

[1] Hernandez T S, Barile C J, Strand M T, et al. Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu[J]. ACS Energy Letters, 2018, 3(1):104-111.
[2] Wang Y, Meng Z, Chen H, et al. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices[J]. Journal of Materials Chemistry C, 2019, 7(7):1966-1973.
[3] Granqvist C G. Out of a niche[J]. Nature Materials, 2006, 5:89-90.
[4] Alesanco Y, Viñuales A, Rodriguez J, et al. All-in-one gel-based electrochromic devices:Strengths and recent developments[J]. Materials, 2018, 11(3):414-440.
[5] Michaelis A, Berneth H, Haarer D, et al. Electro chromic dyesystem for smart window applications[J]. Advanced Materials, 2001, 13(23):1825-1827.
[6] Li X, Zhang L, Wang B, et al. Highly-conductive porous poly (ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance[J]. Electrochimica Acta, 2020, 332:135357-135363.
[7] Thakur V K, Ding G, Ma J, et al. Hybrid materials and polymer electrolytes for electrochromic device applications[J]. Advanced Materials, 2012, 24(30):4071-4096.
[8] Christie A M, Lilley S J, Staunton E, et al. Increasing the conductivity of crystalline polymer electrolytes[J]. Nature, 2005, 433(7021):50-53.
[9] Huang B, Zhang Y, Que M, et al. A facile in situ approach to ion gel based polymer electrolytes for flexible lithium batteries[J]. RSC Advances, 2017, 7(86):54391-54398.
[10] Zhou J, Wang J, Li H, et al. A novel imide-based hybrid gel polymer electrolyte:Synthesis and its application in electrochromic device[J]. Organic Electronics, 2018, 62:516-523.
[11] Danine A, Manceriu L, Fargues A, et al. Eco-friendly redox mediator gelatin-electrolyte for simplified TiO2-viologen based electrochromic devices[J]. Electrochimica Acta, 2017, 258:200-207.
[12] Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5:63-69.
[13] Panero S, Scrosati B, Baret M, et al. Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes[J]. Solar Energy Materials and Solar Cells, 1995, 39:239-246.
[14] Agnihotry S A, Ahmad S, Gupta D, et al. Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica[J]. Electrochimica Acta, 2004, 49(14):2343-2349.
[15] 刘旭, 杨续来. 锂离子电池电解质锂盐的研究进展[J]. 电源技术, 2016, 40(1):218-220.
[16] Kim Y M, Seo D G, Oh H, et al. A facile random copolymer strategy to achieve highly conductive polymer gel electrolytes for electrochemical applications[J]. Journal of Materials Chemistry C, 2019, 7(1):161-169.
[17] Jordão N, Cruz H, Pina F, et al. Studies of bipyridinium ionic liquids and deep eutectic solvents as electrolytes for electrochromic devices[J]. Electrochimica Acta, 2018, 283:718-726.
[18] Zhang L, Wang B, Li X, et al. Further understanding the mechanism of the electrochromic devices with variable infrared emissivity based on polyaniline conducting polymer[J]. Journal of Materials Chemistry C, 2019, 7(32):9878-9891.
[19] Li H, Xie K, Pan Yi, et al. Study of the mechanism of the variable emissivity infrared electrochromic device based on polyaniline conducting polymer[J]. Synthetic Metals, 2012, 162(1-2):22-25.
[20] Ye Y-S, Rick J, Hwang B-J. Ionic liquid polymer electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(8):2719-2743.
[21] 陶长元, 彭敏, 牟天明, 等. 离子液体对聚合物增塑作用的研究进展[J]. 化工进展, 2001, 30(S1):207-211.
[22] Galiński M, Lewandowski A, Stępniak I, et al. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006. 51(26):5567-5580.
[23] Yun T Y, Li X, Bae J, et al. Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices[J]. Materials & Design, 2019, 162:45-51.
[24] Chandrasekhar P, Brian J Z, Lawrence D, et al. Variable-emittance infrared electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes, and semiconductor/polymer coatings, for spacecraft thermal control[J]. Journal of Applied Polymer Science, 2014:40850-40864.
[25] Duluard S, Celik-Cochet A, Saadeddin I, et al. Electrochromic devices based on in situ polymerised EDOT and Prussian Blue:influence of transparent conducting oxide and electrolyte composition-towards up-scaling[J]. New Journal of Chemistry, 2011, 35:2314-2321.
[26] Oh H, Seo D G, Yun T Y, et al. Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion Gels[J]. ACS Applied Materials & Interfaces, 2017, 9:7658-7665.
[27] Yun T Y, Li X, Kim S H, et al. Dual-function electrochromic supercapacitors displaying real-time capacity in color[J]. ACS Applied Materials & Interfaces, 2018, 10:43993-43999.
[28] Ko J, Surendrana A, Febriansyah B, et al. Self-healable electrochromic ion gels for low power and robust displays[J]. Organic Electronics, 2019, 71:199-205.
[29] Kim J W, Myoung J M. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning[J]. Advanced Functional Materials, 2019, 29(13):1808911-1808919.
[30] Díaz M, Ortiz A, Ortiz I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells[J]. Journal of Membrane Science, 2014, 469:379-396.
[31] Marcilla R, Alcaide F, Sardon H, et al. Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices[J]. Electrochemistry Communications, 2006, 8(3):482-488.
[32] Du Q, Fu X, Liu S, et al. Polymer electrolytes based on polymeric ionic liquid poly(methyl 2-(3-vinylimidazolidin-1-yl) acetate bis(trifluoromethane sulfonyl) imide)[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 22(2):316-323.
[33] Lu, H C, Kao S Y, Yu H F, et al. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids[J]. ACS Applied Materials & Interfaces, 2016, 8(44):30351-30361.
[34] Chen F, Ren Y, Guo J, et al. Thermo-and electro-dual responsive poly (ionic liquid) electrolyte based smart windows[J]. Chemical Communications, 2017, 53(10):1595-1598.
[35] Seo, D G, Moon H C, Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices[J]. Advanced Functional Materials, 2018, 28(14):1706948-1706957.
[36] Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15:1155-1158.
[37] Ding Y, Zhang J, Chang L, et al. Preparation of highperformance ionogels with excellent transparency, good mechanical strength, and high conductivity[J]. Advanced Materials, 2017, 29:1704253-1704260.
Outlines

/