[1] Hernandez T S, Barile C J, Strand M T, et al. Bistable black electrochromic windows based on the reversible metal electrodeposition of Bi and Cu[J]. ACS Energy Letters, 2018, 3(1):104-111.
[2] Wang Y, Meng Z, Chen H, et al. Pulsed electrochemical deposition of porous WO3 on silver networks for highly flexible electrochromic devices[J]. Journal of Materials Chemistry C, 2019, 7(7):1966-1973.
[3] Granqvist C G. Out of a niche[J]. Nature Materials, 2006, 5:89-90.
[4] Alesanco Y, Viñuales A, Rodriguez J, et al. All-in-one gel-based electrochromic devices:Strengths and recent developments[J]. Materials, 2018, 11(3):414-440.
[5] Michaelis A, Berneth H, Haarer D, et al. Electro chromic dyesystem for smart window applications[J]. Advanced Materials, 2001, 13(23):1825-1827.
[6] Li X, Zhang L, Wang B, et al. Highly-conductive porous poly (ether ether ketone) electrolyte membranes for flexible electrochromic devices with variable infrared emittance[J]. Electrochimica Acta, 2020, 332:135357-135363.
[7] Thakur V K, Ding G, Ma J, et al. Hybrid materials and polymer electrolytes for electrochromic device applications[J]. Advanced Materials, 2012, 24(30):4071-4096.
[8] Christie A M, Lilley S J, Staunton E, et al. Increasing the conductivity of crystalline polymer electrolytes[J]. Nature, 2005, 433(7021):50-53.
[9] Huang B, Zhang Y, Que M, et al. A facile in situ approach to ion gel based polymer electrolytes for flexible lithium batteries[J]. RSC Advances, 2017, 7(86):54391-54398.
[10] Zhou J, Wang J, Li H, et al. A novel imide-based hybrid gel polymer electrolyte:Synthesis and its application in electrochromic device[J]. Organic Electronics, 2018, 62:516-523.
[11] Danine A, Manceriu L, Fargues A, et al. Eco-friendly redox mediator gelatin-electrolyte for simplified TiO2-viologen based electrochromic devices[J]. Electrochimica Acta, 2017, 258:200-207.
[12] Feuillade G, Perche P. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. Journal of Applied Electrochemistry, 1975, 5:63-69.
[13] Panero S, Scrosati B, Baret M, et al. Electrochromic windows based on polyaniline, tungsten oxide and gel electrolytes[J]. Solar Energy Materials and Solar Cells, 1995, 39:239-246.
[14] Agnihotry S A, Ahmad S, Gupta D, et al. Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica[J]. Electrochimica Acta, 2004, 49(14):2343-2349.
[15] 刘旭, 杨续来. 锂离子电池电解质锂盐的研究进展[J]. 电源技术, 2016, 40(1):218-220.
[16] Kim Y M, Seo D G, Oh H, et al. A facile random copolymer strategy to achieve highly conductive polymer gel electrolytes for electrochemical applications[J]. Journal of Materials Chemistry C, 2019, 7(1):161-169.
[17] Jordão N, Cruz H, Pina F, et al. Studies of bipyridinium ionic liquids and deep eutectic solvents as electrolytes for electrochromic devices[J]. Electrochimica Acta, 2018, 283:718-726.
[18] Zhang L, Wang B, Li X, et al. Further understanding the mechanism of the electrochromic devices with variable infrared emissivity based on polyaniline conducting polymer[J]. Journal of Materials Chemistry C, 2019, 7(32):9878-9891.
[19] Li H, Xie K, Pan Yi, et al. Study of the mechanism of the variable emissivity infrared electrochromic device based on polyaniline conducting polymer[J]. Synthetic Metals, 2012, 162(1-2):22-25.
[20] Ye Y-S, Rick J, Hwang B-J. Ionic liquid polymer electrolytes[J]. Journal of Materials Chemistry A, 2013, 1(8):2719-2743.
[21] 陶长元, 彭敏, 牟天明, 等. 离子液体对聚合物增塑作用的研究进展[J]. 化工进展, 2001, 30(S1):207-211.
[22] Galiński M, Lewandowski A, Stępniak I, et al. Ionic liquids as electrolytes[J]. Electrochimica Acta, 2006. 51(26):5567-5580.
[23] Yun T Y, Li X, Bae J, et al. Non-volatile, Li-doped ion gel electrolytes for flexible WO3-based electrochromic devices[J]. Materials & Design, 2019, 162:45-51.
[24] Chandrasekhar P, Brian J Z, Lawrence D, et al. Variable-emittance infrared electrochromic skins combining unique conducting polymers, ionic liquid electrolytes, microporous polymer membranes, and semiconductor/polymer coatings, for spacecraft thermal control[J]. Journal of Applied Polymer Science, 2014:40850-40864.
[25] Duluard S, Celik-Cochet A, Saadeddin I, et al. Electrochromic devices based on in situ polymerised EDOT and Prussian Blue:influence of transparent conducting oxide and electrolyte composition-towards up-scaling[J]. New Journal of Chemistry, 2011, 35:2314-2321.
[26] Oh H, Seo D G, Yun T Y, et al. Voltage-tunable multicolor, sub-1.5 V, flexible electrochromic devices based on ion Gels[J]. ACS Applied Materials & Interfaces, 2017, 9:7658-7665.
[27] Yun T Y, Li X, Kim S H, et al. Dual-function electrochromic supercapacitors displaying real-time capacity in color[J]. ACS Applied Materials & Interfaces, 2018, 10:43993-43999.
[28] Ko J, Surendrana A, Febriansyah B, et al. Self-healable electrochromic ion gels for low power and robust displays[J]. Organic Electronics, 2019, 71:199-205.
[29] Kim J W, Myoung J M. Flexible and transparent electrochromic displays with simultaneously implementable subpixelated ion gel-based viologens by multiple patterning[J]. Advanced Functional Materials, 2019, 29(13):1808911-1808919.
[30] Díaz M, Ortiz A, Ortiz I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells[J]. Journal of Membrane Science, 2014, 469:379-396.
[31] Marcilla R, Alcaide F, Sardon H, et al. Tailor-made polymer electrolytes based upon ionic liquids and their application in all-plastic electrochromic devices[J]. Electrochemistry Communications, 2006, 8(3):482-488.
[32] Du Q, Fu X, Liu S, et al. Polymer electrolytes based on polymeric ionic liquid poly(methyl 2-(3-vinylimidazolidin-1-yl) acetate bis(trifluoromethane sulfonyl) imide)[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 22(2):316-323.
[33] Lu, H C, Kao S Y, Yu H F, et al. Achieving low-energy driven viologens-based electrochromic devices utilizing polymeric ionic liquids[J]. ACS Applied Materials & Interfaces, 2016, 8(44):30351-30361.
[34] Chen F, Ren Y, Guo J, et al. Thermo-and electro-dual responsive poly (ionic liquid) electrolyte based smart windows[J]. Chemical Communications, 2017, 53(10):1595-1598.
[35] Seo, D G, Moon H C, Mechanically robust, highly ionic conductive gels based on random copolymers for bending durable electrochemical devices[J]. Advanced Functional Materials, 2018, 28(14):1706948-1706957.
[36] Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Advanced Materials, 2003, 15:1155-1158.
[37] Ding Y, Zhang J, Chang L, et al. Preparation of highperformance ionogels with excellent transparency, good mechanical strength, and high conductivity[J]. Advanced Materials, 2017, 29:1704253-1704260.