Papers

Public preference in science popularization and the influencing factors——A statistical analysis of multi-source data

  • REN Fujun ,
  • GAO Jie ,
  • XU Zheping ,
  • WU Hong ,
  • CHEN Xuejuan
Expand
  • 1. National Academy of Innovation Strategy, Beijing 100038, China;
    2. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
    3. University of Science and Technology Beijing, Beijing 100083, China

Received date: 2020-10-13

  Revised date: 2021-02-05

  Online published: 2021-12-21

Abstract

Based on the official website information, the annual statistics and the third-party website data related to China's 219 free access science and technology museums, combined with the targeted questionnaires, the natural language processing and visualization technologies, using the five-factor model of the science communication, this paper makes a multi-source data analysis on the current status of the popular science influence of the S&T museums in China and explores the public popular science preference and the influencing factors. The following conclusions are drawn:The public is more interested in the scientific knowledge closely related to everyday life, and prefers to get information via the new media science popularization, such as the WeChat, the Weibo and the official websites; the public is more concerned with the fundamental facilities such as the environment, the displaying content and the provided services. Females pay more attention to the S&T museums and would like to express their opinion than males; and the public shows stronger willingness to visit the S&T museums around the important policy releasing time. As a result, the policy is considered to be the direct influencing factor of the popular science of the free access S&T museums.

Cite this article

REN Fujun , GAO Jie , XU Zheping , WU Hong , CHEN Xuejuan . Public preference in science popularization and the influencing factors——A statistical analysis of multi-source data[J]. Science & Technology Review, 2021 , 39(22) : 111 -119 . DOI: 10.3981/j.issn.1000-7857.2021.22.012

References

[1] 吴国盛. 当代中国的科学传播[J]. 自然辩证法通讯, 2016, 38(2):3-8.
[2] 任福君, 翟杰全. 科技传播与普及概论[M]. 北京:中国科学技术出版社, 2014.
[3] 徐善衍. 关于当代科普的人文思考[J]. 科普研究, 2010, 5(3):5-7.
[4] 任福君. 中国科普基础设施发展报告[M]. 北京:社会科学文献出版社, 2012.
[5] 金兼斌, 江苏佳, 陈安繁, 等. 新媒体平台上的科学传播效果:基于微信公众号的研究[J]. 中国地质大学学报(社会科学版), 2017(2):107-119.
[6] 郑保章, 李良玉. 新媒体环境下我国科技传播能力的实证分析[J]. 科研管理, 2018, 39(5):19-28.
[7] 齐娜, 宋立荣. 医疗健康领域微博信息传播中的信息质量问题[J]. 科技导报, 2012(17):60-65.
[8] 王黎明, 钟琦. 基于搜索数据的网民科普需求结构和特征研究[J]. 科普研究, 2018, 13(4):53-62.
[9] 王英鸿, 陈霄龙, 邢冲. 一种颜色视错觉展品的设计与制作[J]. 科技传播, 2019, 11(10):161-162.
[10] 杨爽. 浅析色彩在博物馆临时展览中的作用——以中山市博物馆赫哲族鱼皮衣展览设计为例[J]. 文物鉴定与鉴赏, 2020(9):131-133.
[11] Medin D L, Bang M. The cultural side of science communication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(Suppl 4):13621.
[12] 刘文婧.基于传播学五要素分析"互联网+科技馆" 发展[J].科技传播, 2016, 8(19):52.
[13] Blue G. Science Communication is culture:Foregrounding ritual in the public communication of science[J]. Science Communication, 2019, 41(2):243-253.
[14] 李君轶, 任涛, 陆路正. 游客情感计算的文本大数据挖掘方法比较研究[J]. 浙江大学学报(理学版), 2020, 47(4):507-520.
[15] 胡梦雅, 樊重俊, 朱玥. 基于机器学习的微博评论情感分析[J]. 信息与电脑(理论版), 2020, 32(12):71-73.
[16] 许诺, 王德广, 赵煜, 等. 基于机器学习的舆情分析系统[J]. 微型电脑应用, 2020, 36(5):53-56.
[17] Jacques Junior J C S, Musse S R, Jung C R. Crowd analysis using computer vision techniques[J]. Signal Processing Magazine IEEE, 2010, 27(5):66-77.
[18] Chen C L, Ke C, Gong S, et al. Crowd counting and profiling:Methodology and evaluation[M]. Springer New York, 2013.
[19] 魏永超, 庄夏, 傅强. 人群异常识别技术研究进展[J]. 计算机系统应用, 2016, 25(9):10-16.
[20] 郭文生, 包灵, 钱智成, 等. 基于自适应叠合分割与深度神经网络的人数统计方法[J]. 计算机科学, 2018, 45(8):229-235.
[21] 周瑞华. 下一站社会化营销":暗社交"[J]. 成功营销, 2016(11):18-19.
[22] 任福君. 科技馆免费开放评估的总体思考[J]. 今日科苑, 2020(9):15-24.
Outlines

/