Scientific Comments

Chiral chemistry: Asymmetric organocatalysis: The 2021 Nobel Prize in Chemistry

  • LI Guigen
Expand
  • 1. Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China;
    2. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock 79409, USA

Received date: 2021-10-08

  Revised date: 2021-10-20

  Online published: 2021-12-21

Abstract

The 2021 Nobel Prize in Chemistry has been awarded to two chemists, Benjamin List and David W.C. MacMillan for their contributions "for the development of asymmetric organocatalysis". This paper reviews the source, the innovation and the background of the Nobel prize work. The chiral chemistry, the chiral catalysts and the asymmetric organic catalysis and their control of chirality are explained, along with the categories of the organic catalysis and the catalysts. The important contributions of Chinese scientists in the field of the organic asymmetric catalysis are introduced, and the development, the research status and the future of this field are highlighted.

Cite this article

LI Guigen . Chiral chemistry: Asymmetric organocatalysis: The 2021 Nobel Prize in Chemistry[J]. Science & Technology Review, 2021 , 39(22) : 120 -129 . DOI: 10.3981/j.issn.1000-7857.2021.22.013

References

[1] Wu G, Liu Y, Yang Z, et al. Multilayer 3D chirality and its synthetic assembly[J]. Research, 2019, 2019(6244):1-11.
[2] Wu G, Liu Y, Yang Z, et al. Enantioselective assembly of multi-layer 3D chirality[J]. National Science Review, 2020, 7(3):588-599.
[3] Wu G, Liu Y, Rouh H, et al. Asymmetric catalytic approach to multilayer 3D chirality[J]. Chemistry-A European Journal, 2021, 27(30):8013-8020.
[4] Hu M, Feng H T, Yuan Y X, et al. Chiral AIEgens-Chiral recognition, CPL materials and other chiral applications[J]. Coordination Chemistry Review, 2020, 416(213329):213329.
[5] Zhao T, Han J, Duan P, et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems:Energy transfer, photon upconversion, charge transfer, and organic radical[J]. Accounts of Chemical Research, 2020, 53(7):1279-1292.
[6] Ru Y, Sui L, Song H, et al. Rational design of MulticolorEmitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2021, 60(25):14091-14099.
[7] Silverman S K. DNA as a versatile chemical component for catalysis, encoding, and stereocontrol[J]. Angewandte Chemie International Edition, 2010, 49(40):7180-7201.
[8] Lilley D M J. Mechanisms of RNA catalysis[J]. Philosophical Transactions of The Royal Society B, 2011, 366(1580):2910-2917.
[9] Langenbeck W. Über organische katalysatoren. III. die bildung von oxamid aus dicyan bei gegenwart von aldehyden[J]. Justus Liebigs Annalen der Chemie,1929, 469(1):16-25.
[10] Hajos Z G, Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry[J]. The Journal of Organic Chemistry, 1974, 39(12):1615-1621.
[11] List B, Lerner R A, Barbas C F. Proline-Catalyzed direct asymmetric aldol reactions[J]. Journal of American Chemistry Society, 2000, 122(10):2395-2396.
[12] Čorić I, List B. Asymmetric spiroacetalization catalysed by confined brønsted acids[J]. Nature, 2012, 483(7389):315-319.
[13] Ahrendt K A, Borths C J, MacMillan D W C. New strategies for organic catalysis:The first highly enantioselective organocatalytic Diels-Alder reaction[J]. Journal of American Chemistry Society, 2000, 122(17):4243-4244.
[14] Nicewicz D A, MacMillan D W C. Merging photoredox catalysis with organocatalysis:The direct asymmetric alkylation of aldehydes[J]. Science, 2008, 322(5898):77-80.
[15] Qiao S, Mo J, Wilcox C B, et al. Chiral GAP catalysts of phosphonylated imidazolidinones and their applications in asymmetric Diels-Alder and Friedel-Crafts reactions[J]. Organic & Bimolecular Chemistry, 2017, 15(7):1718-1724.
[16] Luo S Z, Xu H, Li J, et al. A simple primary-tertiary diamine-brønsted acid catalyst for asymmetric direct aldol reactions of linear aliphatic ketones[J]. Journal of the American Chemical Society, 2007, 129(11):3074-3075.
[17] Zhu Y, Long Z, Luo S Z. Asymmetric α-photoalkylation of β -ketocarbonyls by primary amine catalysis:Facile access to acyclic all-carbon quaternary stereocenters[J]. Journal of the American Chemical Society, 2014, 136(42):14642-14645.
[18] Liu X, Qin B, Zhou X, et al. Catalytic asymmetric cyanosilylation of ketones by a chiral amino acid salt[J]. Journal of the American Chemical Society, 2005, 127(35):12224-12225.
[19] Tang Z, Jiang F, Yu L T, et al. Novel small organic molecules for highly enantioselective direct aldol reaction[J]. Journal of the American Chemical Society, 2003, 125(18):5262-5263.
[20] Chen J R, Lu H H, Li X Y, et al. Readily tunable and bifunctional L-prolinamide derivatives:Design and application in the direct enantioselective aldol reactions[J]. Organic Letters, 2005, 7(20):4543-4545.
[21] Zhong G F. A facile and rapid route to highly enantiopure 1,2-diols by novel catalytic asymmetric a-aminoxylation of aldehydes[J]. Angewandte Chemie International Edition, 2003, 42(35):4247-4250.
[22] Chai Z, Zhao G. Efficient organocatalysts derived from simple chiral acyclic amino acids in asymmetric catalysis[J]. Catalysis Science & Technology, 2012, 2(1):29-41.
[23] Chen F X, Shao C, Wang Q, et al. An enantioselective michael addition of malonate to nitroalkenes catalyzed by low loading demethylquinine salts in water[J]. Tetrahedron Letters, 2007, 48(48):8456-8459.
[24] Liu K, Cui H F, Nie J, et al. Highly enantioselective michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides[J]. Organic Letters, 2007, 9(5):923-925.
[25] Wang J, Liu H, Fan Y, et al. Bicyclic guanidine-catalyzed direct asymmetric allylic addition of N-aryl alkylidene-succinimides[J]. Chemistry A European Journal, 2010, 16(42):12534-12537.
[26] Zhang Z H, Dong X Q, Chen D, et al. Fine-tunable organocatalysts bearing multiple hydrogen-bonding donors for construction of adjacent quaternary and tertiary stereocenters via a michael reaction[J]. Chemistry A European Journal, 2008, 14(29):8780-8783.
[27] Han R G, Wang Y, Li Y Y, et al. Proline-mediated enantioselective construction of tetrahydropyridines via a cascade Mannich-type/intramolecular cyclization reaction[J]. Advanced Synthesis & Catalysis, 2008, 350(10):1474-1478.
[28] Liu Y L, Zhou F, Cao J J, et al. A facile method for the synthesis of oxindole based quaternary alpha-aminonitriles via the Strecker reaction[J]. Organic & Biomolecular Chemistry, 2010, 8(17):3847-3850.
[29] Chen X, Dong S, Qiao Z, et al. Guanidine prganocatalyst for the asymmetric mannich-type reaction between isothiocyanato imide and sulfonyl imines[J]. Chemistry A European Journal, 2011, 17(9):2583-2586.
[30] Xie J W, Chen W, Li R, et al. Highly asymmetric michael addition to α,β-Unsaturated ketones catalyzed by 9-amino-9-deoxyepiquinine[J]. Angewandte Chemie International Edition, 2007, 46(3):389-392.
[31] Zhang Q W, Fan C A, Zhang H J, et al. Børnsted Acid catalyzed enantioselective semipinacol rearrangement for the synthesis of chiral spiroethers[J]. Angewandte Chemie International Edition, 2009, 48(45):8572-8574.
[32] Xu B, Zhu S F, Xie X L, et al. Asymmetric N-H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acids[J]. Angewandte Chemie International Edition, 2011, 50(48):11483-11486.
[33] Lu M, Zhu D, Lu Y, et al. Chiral brønsted acid-catalyzed enantioselective alpha-hydroxylation of beta-Dicarbonyl compounds[J]. Journal of the American Chemical Society, 2009, 131(13):4562-4563.
[34] Kang Q, Zhao Z A, You S L. Highly enantioselective Friedel-Crafts reaction of indoles with imines by a chiral phosphoric acid[J]. Journal of the American Chemical Society, 2007, 129(6):1484-1485.
[35] Zhang Y C, Jiang F, Shi F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles:Strategies, reactions, and outreach[J]. Accounts of Chemical Research, 2020, 53(2):425-446.
[36] Cheng J K, Xiang S H, Li S, et al. Recent advances in catalytic asymmetric construction of atropisomers[J]. Chemical Reviews, 2021, 121(8):4805-4902.
[37] Zhang J, Yu P, Li S Y, et al. Asymmetric phosphoric acid-catalyzed four-component Ugi reaction[J]. Science, 2018, 361(6407):eaas8707.
[38] Lin J S, Li T T, Jiao G Y, et al. Chiral brønsted acid catalyzed dynamic kinetic asymmetric hydroamination of racemic allenes and asymmetric hydroamination of dienes[J]. Angewandte Chemie International Edition, 2019, 58(21):7092-7096.
[39] Yu P, Lin J S, Li L, et al. Enantioselective C-H bond functionalization triggered by radical trifluoromethylation of unactivated alkene[J]. Angewandte Chemie International Edition, 2014, 53(44):11890-11894.
[40] Chen Z, Wang B, Wang Z, et al. Complex bioactive alkaloid-type polycycles through efficient catalytic asymmetric multicomponent aza-Diels-Alder reaction of indoles with oxetane as directing group[J]. Angewandte Chemie International Edition, 2013, 52(7):2027-2031.
[41] Guo Q, Du D, Xu J. The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines[J]. Angewandte Chemie International Edition, 2008, 47(4):759-762.
[42] Hu W H, Xu X F, Zhou J, et al. Cooperative catalysis with chiral børnsted Acid-Rh2(OAc)4:Highly enantioselective three-component reactions of diazo compounds with alcohols and imines[J]. Journal of the American Chemical Society, 2008, 130(25):7782-7783.
[43] Chen Q A, Wang D S, Zhou Y G, et al. Convergent asymmetric disproportionation reactions:Metal/brønsted acid relay catalysis for enantioselective reduction of quinoxalines[J]. Journal of the American Chemical Society, 2011, 133(16):6126-6129.
[44] Zhang Y Q, Chen Y B, Liu J R, et al. Asymmetric dearomatization catalysed by chiral brønsted acids via activation of ynamides[EB/OL].[2021-10-16]. https://doi.org/10.1038/s41557-021-00778-z.
[45] Rajkumar S, Tang M Y, Yang X Y. Chiral phosphoric acid catalyzed kinetic resolution of 2-amido benzyl alcohols:Asymmetric synthesis of 4H-3, 1-Benzoxazines[J]. Angewandte Chemie International Edition, 2020, 59(6):2333-2337.
[46] Rahman A, Lin X F. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis[J]. Organic & Biomolecular Chemistry, 2018, 16(26):4753-4777.
[47] Xu S M, Wang Z, Zhang X, et al. Chiral brønsted acid catalyzed asymmetric baeyer-villiger reaction of 3-substituted cyclobutanones by using aqueous H2O2[J]. Angewandte Chemie International Edition, 2008, 47(15):2840-2843.
[48] Li Y, Zhen F, You S L. D-camphor-derived triazolium salts for catalytic intramolecular crossed aldehyde-ketone benzoin reactions[J]. Chemical Communications, 2008, 39(19):2263-2265.
[49] Zhang Y R, He L, Wu X, et al. Chiral N-heterocyclic carbene catalyzed staudinger reaction of ketenes with imines:Highly enantioselective synthesis of N-Boc-lactams[J]. Organic Letters, 2008, 10(2):277-280.
[50] Zhao Y M, Cheung M S, Lin Z, et al. Enantioselective synthesis of β, γ -unsaturated α -fluoroesters catalyzed by N-heterocyclic carbenes[J]. Angewandte Chemie International Edition, 2012, 51(41):10359-10363.
[51] Wang L, Chen J, Huang Y. Highly enantioselective AzaMichael reaction between alkyl amines and β-trifluoromethyl β-aryl nitroolefins[J]. Angewandte Chemie International Edition, 2015, 54(51):15414.
[52] Guo F, Chen J, Huang Y. A bifunctional N-heterocyclic carbene as a noncovalent organocatalyst for enantioselective Aza-Michael addition reactions[J]. ACS Catalysis, 2021, 11(10):6316.
[53] Fu Z, Xu J, Zhu T, et al. β-Carbon activation of saturated carboxylic esters through N-heterocyclic carbene organocatalysis[J]. Nature Chemistry, 2013, 5(10):835-839.
[54] Zhao C, Guo D, Munkerup K, et al. Enantioselective[3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes[J]. Nature Communications, 2018, 9(1):611.
[55] Zhang Z F, Xie F, Jia J, et al. Chiral bicycle imidazole nucleophilic catalysts:Rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement[J]. Journal of the American Chemical Society, 2010, 132(45):15939-15941.
[56] Shi Z, Yu P, Loh T P, et al. Catalytic asymmetric[4+2] annulation initiated by an aza-rauhut-currier reaction:Facile entry to highly functionalized tetrahydropyridines[J]. Angewandte Chemie International Edition, 2012, 51(31):7825-7829.
[57] Su X, Zhou W, Li Y, et al. Design, synthesis, and application of a chiral sulfinamide phosphine catalyst for the enantioselective intramolecular Rauhut-Currier reaction[J]. Angewandte Chemie International Edition, 2015, 54(23):6874-6877.
[58] Dong X, Liang L, Li E, et al. Highly enantioselective intermolecular cross Rauhut-Currier reaction catalyzed by a multifunctional Lewis base catalyst[J]. Angew Chem Int Ed Engl, 2015, 54(5):1621-1624.
[59] Shi M, Chen L H, Li C Q. Chiral phosphine Lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of Nsulfonated imines with activated olefins[J]. Journal of the American Chemical Society, 2005, 127(11):3790-3800.
[60] Wang X J, Fang T, Tong X F. Enantioselective aminecatalyzed[4+2] annulations of allenoates and oxo-dienes:An asymmetric synthesis of dihydropyrans[J]. Angewandte Chemie International Edition, 2011, 50(23):5361-5364.
[61] Zhang L, Liu H, Qiao G, et al. Phosphine-catalyzed highly enantioselective[3+3] cycloaddition of MoritaBaylis-Hillman carbonates with C, N-cyclic azomethine imines[J]. Journal of the American Chemical Society, 2015, 137(13):4316-4319.
[62] Du H, Zhao D, Ding K. Enantioselective catalysis of the hetero-Diels-Alder reaction between Brassard's diene and aldehydes by hydrogen-bonding activation:A onestep synthesis of (S)-(+)-dihydrokawain[J]. Chemistry A European Journal, 2004, 10(23):5964-5970.
[63] Xiao H, Chai Z, Zheng C W, et al. Asymmetric[3+2] cycloadditions of allenoates and dual activated olefins catalyzed by simple bifunctional N-Acyl aminophosphines[J]. Angewandte Chemie International Edition, 2010, 249(26):4467-4470.
[64] Hua M Q, Cui H F, Wang L, et al. Reversal of enantioselectivity by tuning the conformational flexibility of phase-transfer catalysts[J]. Angewandte Chemie International Edition, 2010, 49(15):2772-2776.
[65] Xu B, Shi L L, Zhang Y Z, et al. Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation[J]. Chemical Science, 2014, 5(5):1988-1991.
[66] Chen J F, Gong X, Li J Y, et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction[J]. Science, 2018, 360(6396):1438-1442.
[67] Huang S, Wen H, Tian Y A, et al. Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements[J]. Angewandte Chemie International Edition, 2021, 60(39):21486-21493.
[68] Tu Y, Wang Z X, Shi Y. An efficient asymmetric epoxidation method for trans-olefins mediated by a fructosederived ketone[J]. Journal of the American Chemical Society, 1996, 118(40):9806-9807.
[69] Yang D, Yip Y C, Tang M W, et al. A C2 symmetric chiral ketone for catalytic asymmetric epoxidation of unfunctionalized olefins[J]. Journal of the American Chemical Society, 1996, 118(2):491-492.
[70] Chen Y, Tian S-K, Deng L. A highly enantioselective catalytic desymmetrization of cyclic anhydrides with modified cinchona alkaloids[J]. Journal of the American Chemical Society, 2000, 122(39):9542-9543.
[71] Wang W, Wang J, Hao L. Direct, highly enantioselective pyrrolidine sulfonamide catalyzed Michael addition of aldehydes to nitrostyrenes[J]. Angewandte Chemie International Edition, 2005, 44(9):1369-1371.
[72] Zhang S L, Xie H X, Zhu J, et al. Organocatalytic enantioselective β -functionalization of aldehydes by oxidation of enamines and their application in cascade reactions[J]. Nature Communications, 2011, 2(2):211.
[73] Zhu G, Chen Z, Jiang Q, et al. Asymmetric[3+2] cycloaddition of 2, 3-butadienoates with electron-deficient olefins catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1] heptanes[J]. Journal of the American Chemical Society, 1997, 119(16):3836-3837.
[74] Ma T, Fu X, Kee C W, et al. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions[J]. Journal of the American Chemical Society, 2011, 133(9):2828-2831.
[75] Zhang X, Ren J, Tan S M, et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction[J]. Science, 2019, 363(6425):400-404.
[76] Han X, Wang Y, Zhong F, et al. Enantioselective[3+2] cycloaddition of allenes to acrylates catalyzed by dipeptide-derived phosphines:Facile creation of functionalized cyclopentenes containing quaternary stereogenic centers[J]. Journal of the American Chemical Society, 2011, 133(6):1726-1729.
Outlines

/