[1] Wu G, Liu Y, Yang Z, et al. Multilayer 3D chirality and its synthetic assembly[J]. Research, 2019, 2019(6244):1-11.
[2] Wu G, Liu Y, Yang Z, et al. Enantioselective assembly of multi-layer 3D chirality[J]. National Science Review, 2020, 7(3):588-599.
[3] Wu G, Liu Y, Rouh H, et al. Asymmetric catalytic approach to multilayer 3D chirality[J]. Chemistry-A European Journal, 2021, 27(30):8013-8020.
[4] Hu M, Feng H T, Yuan Y X, et al. Chiral AIEgens-Chiral recognition, CPL materials and other chiral applications[J]. Coordination Chemistry Review, 2020, 416(213329):213329.
[5] Zhao T, Han J, Duan P, et al. New perspectives to trigger and modulate circularly polarized luminescence of complex and aggregated systems:Energy transfer, photon upconversion, charge transfer, and organic radical[J]. Accounts of Chemical Research, 2020, 53(7):1279-1292.
[6] Ru Y, Sui L, Song H, et al. Rational design of MulticolorEmitting chiral carbonized polymer dots for full-color and white circularly polarized luminescence[J]. Angewandte Chemie International Edition, 2021, 60(25):14091-14099.
[7] Silverman S K. DNA as a versatile chemical component for catalysis, encoding, and stereocontrol[J]. Angewandte Chemie International Edition, 2010, 49(40):7180-7201.
[8] Lilley D M J. Mechanisms of RNA catalysis[J]. Philosophical Transactions of The Royal Society B, 2011, 366(1580):2910-2917.
[9] Langenbeck W. Über organische katalysatoren. III. die bildung von oxamid aus dicyan bei gegenwart von aldehyden[J]. Justus Liebigs Annalen der Chemie,1929, 469(1):16-25.
[10] Hajos Z G, Parrish D R. Asymmetric synthesis of bicyclic intermediates of natural product chemistry[J]. The Journal of Organic Chemistry, 1974, 39(12):1615-1621.
[11] List B, Lerner R A, Barbas C F. Proline-Catalyzed direct asymmetric aldol reactions[J]. Journal of American Chemistry Society, 2000, 122(10):2395-2396.
[12] Čorić I, List B. Asymmetric spiroacetalization catalysed by confined brønsted acids[J]. Nature, 2012, 483(7389):315-319.
[13] Ahrendt K A, Borths C J, MacMillan D W C. New strategies for organic catalysis:The first highly enantioselective organocatalytic Diels-Alder reaction[J]. Journal of American Chemistry Society, 2000, 122(17):4243-4244.
[14] Nicewicz D A, MacMillan D W C. Merging photoredox catalysis with organocatalysis:The direct asymmetric alkylation of aldehydes[J]. Science, 2008, 322(5898):77-80.
[15] Qiao S, Mo J, Wilcox C B, et al. Chiral GAP catalysts of phosphonylated imidazolidinones and their applications in asymmetric Diels-Alder and Friedel-Crafts reactions[J]. Organic & Bimolecular Chemistry, 2017, 15(7):1718-1724.
[16] Luo S Z, Xu H, Li J, et al. A simple primary-tertiary diamine-brønsted acid catalyst for asymmetric direct aldol reactions of linear aliphatic ketones[J]. Journal of the American Chemical Society, 2007, 129(11):3074-3075.
[17] Zhu Y, Long Z, Luo S Z. Asymmetric α-photoalkylation of β -ketocarbonyls by primary amine catalysis:Facile access to acyclic all-carbon quaternary stereocenters[J]. Journal of the American Chemical Society, 2014, 136(42):14642-14645.
[18] Liu X, Qin B, Zhou X, et al. Catalytic asymmetric cyanosilylation of ketones by a chiral amino acid salt[J]. Journal of the American Chemical Society, 2005, 127(35):12224-12225.
[19] Tang Z, Jiang F, Yu L T, et al. Novel small organic molecules for highly enantioselective direct aldol reaction[J]. Journal of the American Chemical Society, 2003, 125(18):5262-5263.
[20] Chen J R, Lu H H, Li X Y, et al. Readily tunable and bifunctional L-prolinamide derivatives:Design and application in the direct enantioselective aldol reactions[J]. Organic Letters, 2005, 7(20):4543-4545.
[21] Zhong G F. A facile and rapid route to highly enantiopure 1,2-diols by novel catalytic asymmetric a-aminoxylation of aldehydes[J]. Angewandte Chemie International Edition, 2003, 42(35):4247-4250.
[22] Chai Z, Zhao G. Efficient organocatalysts derived from simple chiral acyclic amino acids in asymmetric catalysis[J]. Catalysis Science & Technology, 2012, 2(1):29-41.
[23] Chen F X, Shao C, Wang Q, et al. An enantioselective michael addition of malonate to nitroalkenes catalyzed by low loading demethylquinine salts in water[J]. Tetrahedron Letters, 2007, 48(48):8456-8459.
[24] Liu K, Cui H F, Nie J, et al. Highly enantioselective michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides[J]. Organic Letters, 2007, 9(5):923-925.
[25] Wang J, Liu H, Fan Y, et al. Bicyclic guanidine-catalyzed direct asymmetric allylic addition of N-aryl alkylidene-succinimides[J]. Chemistry A European Journal, 2010, 16(42):12534-12537.
[26] Zhang Z H, Dong X Q, Chen D, et al. Fine-tunable organocatalysts bearing multiple hydrogen-bonding donors for construction of adjacent quaternary and tertiary stereocenters via a michael reaction[J]. Chemistry A European Journal, 2008, 14(29):8780-8783.
[27] Han R G, Wang Y, Li Y Y, et al. Proline-mediated enantioselective construction of tetrahydropyridines via a cascade Mannich-type/intramolecular cyclization reaction[J]. Advanced Synthesis & Catalysis, 2008, 350(10):1474-1478.
[28] Liu Y L, Zhou F, Cao J J, et al. A facile method for the synthesis of oxindole based quaternary alpha-aminonitriles via the Strecker reaction[J]. Organic & Biomolecular Chemistry, 2010, 8(17):3847-3850.
[29] Chen X, Dong S, Qiao Z, et al. Guanidine prganocatalyst for the asymmetric mannich-type reaction between isothiocyanato imide and sulfonyl imines[J]. Chemistry A European Journal, 2011, 17(9):2583-2586.
[30] Xie J W, Chen W, Li R, et al. Highly asymmetric michael addition to α,β-Unsaturated ketones catalyzed by 9-amino-9-deoxyepiquinine[J]. Angewandte Chemie International Edition, 2007, 46(3):389-392.
[31] Zhang Q W, Fan C A, Zhang H J, et al. Børnsted Acid catalyzed enantioselective semipinacol rearrangement for the synthesis of chiral spiroethers[J]. Angewandte Chemie International Edition, 2009, 48(45):8572-8574.
[32] Xu B, Zhu S F, Xie X L, et al. Asymmetric N-H insertion reaction cooperatively catalyzed by rhodium and chiral spiro phosphoric acids[J]. Angewandte Chemie International Edition, 2011, 50(48):11483-11486.
[33] Lu M, Zhu D, Lu Y, et al. Chiral brønsted acid-catalyzed enantioselective alpha-hydroxylation of beta-Dicarbonyl compounds[J]. Journal of the American Chemical Society, 2009, 131(13):4562-4563.
[34] Kang Q, Zhao Z A, You S L. Highly enantioselective Friedel-Crafts reaction of indoles with imines by a chiral phosphoric acid[J]. Journal of the American Chemical Society, 2007, 129(6):1484-1485.
[35] Zhang Y C, Jiang F, Shi F. Organocatalytic asymmetric synthesis of indole-based chiral heterocycles:Strategies, reactions, and outreach[J]. Accounts of Chemical Research, 2020, 53(2):425-446.
[36] Cheng J K, Xiang S H, Li S, et al. Recent advances in catalytic asymmetric construction of atropisomers[J]. Chemical Reviews, 2021, 121(8):4805-4902.
[37] Zhang J, Yu P, Li S Y, et al. Asymmetric phosphoric acid-catalyzed four-component Ugi reaction[J]. Science, 2018, 361(6407):eaas8707.
[38] Lin J S, Li T T, Jiao G Y, et al. Chiral brønsted acid catalyzed dynamic kinetic asymmetric hydroamination of racemic allenes and asymmetric hydroamination of dienes[J]. Angewandte Chemie International Edition, 2019, 58(21):7092-7096.
[39] Yu P, Lin J S, Li L, et al. Enantioselective C-H bond functionalization triggered by radical trifluoromethylation of unactivated alkene[J]. Angewandte Chemie International Edition, 2014, 53(44):11890-11894.
[40] Chen Z, Wang B, Wang Z, et al. Complex bioactive alkaloid-type polycycles through efficient catalytic asymmetric multicomponent aza-Diels-Alder reaction of indoles with oxetane as directing group[J]. Angewandte Chemie International Edition, 2013, 52(7):2027-2031.
[41] Guo Q, Du D, Xu J. The development of double axially chiral phosphoric acids and their catalytic transfer hydrogenation of quinolines[J]. Angewandte Chemie International Edition, 2008, 47(4):759-762.
[42] Hu W H, Xu X F, Zhou J, et al. Cooperative catalysis with chiral børnsted Acid-Rh2(OAc)4:Highly enantioselective three-component reactions of diazo compounds with alcohols and imines[J]. Journal of the American Chemical Society, 2008, 130(25):7782-7783.
[43] Chen Q A, Wang D S, Zhou Y G, et al. Convergent asymmetric disproportionation reactions:Metal/brønsted acid relay catalysis for enantioselective reduction of quinoxalines[J]. Journal of the American Chemical Society, 2011, 133(16):6126-6129.
[44] Zhang Y Q, Chen Y B, Liu J R, et al. Asymmetric dearomatization catalysed by chiral brønsted acids via activation of ynamides[EB/OL].[2021-10-16]. https://doi.org/10.1038/s41557-021-00778-z.
[45] Rajkumar S, Tang M Y, Yang X Y. Chiral phosphoric acid catalyzed kinetic resolution of 2-amido benzyl alcohols:Asymmetric synthesis of 4H-3, 1-Benzoxazines[J]. Angewandte Chemie International Edition, 2020, 59(6):2333-2337.
[46] Rahman A, Lin X F. Development and application of chiral spirocyclic phosphoric acids in asymmetric catalysis[J]. Organic & Biomolecular Chemistry, 2018, 16(26):4753-4777.
[47] Xu S M, Wang Z, Zhang X, et al. Chiral brønsted acid catalyzed asymmetric baeyer-villiger reaction of 3-substituted cyclobutanones by using aqueous H2O2[J]. Angewandte Chemie International Edition, 2008, 47(15):2840-2843.
[48] Li Y, Zhen F, You S L. D-camphor-derived triazolium salts for catalytic intramolecular crossed aldehyde-ketone benzoin reactions[J]. Chemical Communications, 2008, 39(19):2263-2265.
[49] Zhang Y R, He L, Wu X, et al. Chiral N-heterocyclic carbene catalyzed staudinger reaction of ketenes with imines:Highly enantioselective synthesis of N-Boc-lactams[J]. Organic Letters, 2008, 10(2):277-280.
[50] Zhao Y M, Cheung M S, Lin Z, et al. Enantioselective synthesis of β, γ -unsaturated α -fluoroesters catalyzed by N-heterocyclic carbenes[J]. Angewandte Chemie International Edition, 2012, 51(41):10359-10363.
[51] Wang L, Chen J, Huang Y. Highly enantioselective AzaMichael reaction between alkyl amines and β-trifluoromethyl β-aryl nitroolefins[J]. Angewandte Chemie International Edition, 2015, 54(51):15414.
[52] Guo F, Chen J, Huang Y. A bifunctional N-heterocyclic carbene as a noncovalent organocatalyst for enantioselective Aza-Michael addition reactions[J]. ACS Catalysis, 2021, 11(10):6316.
[53] Fu Z, Xu J, Zhu T, et al. β-Carbon activation of saturated carboxylic esters through N-heterocyclic carbene organocatalysis[J]. Nature Chemistry, 2013, 5(10):835-839.
[54] Zhao C, Guo D, Munkerup K, et al. Enantioselective[3+3] atroposelective annulation catalyzed by N-heterocyclic carbenes[J]. Nature Communications, 2018, 9(1):611.
[55] Zhang Z F, Xie F, Jia J, et al. Chiral bicycle imidazole nucleophilic catalysts:Rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement[J]. Journal of the American Chemical Society, 2010, 132(45):15939-15941.
[56] Shi Z, Yu P, Loh T P, et al. Catalytic asymmetric[4+2] annulation initiated by an aza-rauhut-currier reaction:Facile entry to highly functionalized tetrahydropyridines[J]. Angewandte Chemie International Edition, 2012, 51(31):7825-7829.
[57] Su X, Zhou W, Li Y, et al. Design, synthesis, and application of a chiral sulfinamide phosphine catalyst for the enantioselective intramolecular Rauhut-Currier reaction[J]. Angewandte Chemie International Edition, 2015, 54(23):6874-6877.
[58] Dong X, Liang L, Li E, et al. Highly enantioselective intermolecular cross Rauhut-Currier reaction catalyzed by a multifunctional Lewis base catalyst[J]. Angew Chem Int Ed Engl, 2015, 54(5):1621-1624.
[59] Shi M, Chen L H, Li C Q. Chiral phosphine Lewis bases catalyzed asymmetric aza-Baylis-Hillman reaction of Nsulfonated imines with activated olefins[J]. Journal of the American Chemical Society, 2005, 127(11):3790-3800.
[60] Wang X J, Fang T, Tong X F. Enantioselective aminecatalyzed[4+2] annulations of allenoates and oxo-dienes:An asymmetric synthesis of dihydropyrans[J]. Angewandte Chemie International Edition, 2011, 50(23):5361-5364.
[61] Zhang L, Liu H, Qiao G, et al. Phosphine-catalyzed highly enantioselective[3+3] cycloaddition of MoritaBaylis-Hillman carbonates with C, N-cyclic azomethine imines[J]. Journal of the American Chemical Society, 2015, 137(13):4316-4319.
[62] Du H, Zhao D, Ding K. Enantioselective catalysis of the hetero-Diels-Alder reaction between Brassard's diene and aldehydes by hydrogen-bonding activation:A onestep synthesis of (S)-(+)-dihydrokawain[J]. Chemistry A European Journal, 2004, 10(23):5964-5970.
[63] Xiao H, Chai Z, Zheng C W, et al. Asymmetric[3+2] cycloadditions of allenoates and dual activated olefins catalyzed by simple bifunctional N-Acyl aminophosphines[J]. Angewandte Chemie International Edition, 2010, 249(26):4467-4470.
[64] Hua M Q, Cui H F, Wang L, et al. Reversal of enantioselectivity by tuning the conformational flexibility of phase-transfer catalysts[J]. Angewandte Chemie International Edition, 2010, 49(15):2772-2776.
[65] Xu B, Shi L L, Zhang Y Z, et al. Catalytic asymmetric direct α-alkylation of amino esters by aldehydes via imine activation[J]. Chemical Science, 2014, 5(5):1988-1991.
[66] Chen J F, Gong X, Li J Y, et al. Carbonyl catalysis enables a biomimetic asymmetric Mannich reaction[J]. Science, 2018, 360(6396):1438-1442.
[67] Huang S, Wen H, Tian Y A, et al. Organocatalytic enantioselective construction of chiral azepine skeleton bearing multiple-stereogenic elements[J]. Angewandte Chemie International Edition, 2021, 60(39):21486-21493.
[68] Tu Y, Wang Z X, Shi Y. An efficient asymmetric epoxidation method for trans-olefins mediated by a fructosederived ketone[J]. Journal of the American Chemical Society, 1996, 118(40):9806-9807.
[69] Yang D, Yip Y C, Tang M W, et al. A C2 symmetric chiral ketone for catalytic asymmetric epoxidation of unfunctionalized olefins[J]. Journal of the American Chemical Society, 1996, 118(2):491-492.
[70] Chen Y, Tian S-K, Deng L. A highly enantioselective catalytic desymmetrization of cyclic anhydrides with modified cinchona alkaloids[J]. Journal of the American Chemical Society, 2000, 122(39):9542-9543.
[71] Wang W, Wang J, Hao L. Direct, highly enantioselective pyrrolidine sulfonamide catalyzed Michael addition of aldehydes to nitrostyrenes[J]. Angewandte Chemie International Edition, 2005, 44(9):1369-1371.
[72] Zhang S L, Xie H X, Zhu J, et al. Organocatalytic enantioselective β -functionalization of aldehydes by oxidation of enamines and their application in cascade reactions[J]. Nature Communications, 2011, 2(2):211.
[73] Zhu G, Chen Z, Jiang Q, et al. Asymmetric[3+2] cycloaddition of 2, 3-butadienoates with electron-deficient olefins catalyzed by novel chiral 2,5-dialkyl-7-phenyl-7-phosphabicyclo[2.2.1] heptanes[J]. Journal of the American Chemical Society, 1997, 119(16):3836-3837.
[74] Ma T, Fu X, Kee C W, et al. Pentanidium-catalyzed enantioselective phase-transfer conjugate addition reactions[J]. Journal of the American Chemical Society, 2011, 133(9):2828-2831.
[75] Zhang X, Ren J, Tan S M, et al. An enantioconvergent halogenophilic nucleophilic substitution (SN2X) reaction[J]. Science, 2019, 363(6425):400-404.
[76] Han X, Wang Y, Zhong F, et al. Enantioselective[3+2] cycloaddition of allenes to acrylates catalyzed by dipeptide-derived phosphines:Facile creation of functionalized cyclopentenes containing quaternary stereogenic centers[J]. Journal of the American Chemical Society, 2011, 133(6):1726-1729.