Reviews

Progress in microwave pyrolysis of biomass for gas production

  • JI Ke ,
  • WANG Xinzhu ,
  • GUO Jianxiang ,
  • BI Xuejun ,
  • LIU Bingbing ,
  • SUN Jinfei ,
  • LI Wenzhuo ,
  • LIU Yimin
Expand
  • 1. School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China;
    2. Shandong Key Laboratory of Thermal Utilization and Energy Saving Equipment Technology, Qingdao 266033, China;
    3. National Research Center for Building Engineering Technology, Beijing 100120, China

Received date: 2021-08-18

  Revised date: 2021-10-20

  Online published: 2022-01-08

Abstract

As one of the leading technologies in the field of the biomass thermochemical treatment, the biomass microwave pyrolysis enjoys the advantages of fast reaction rate, easy control, safety and no pollution. However, there are some problems in the gas production, such as low yield and low calorific value, which seriously restricts the comprehensive and efficient utilization of the biomass energy. In this paper, the principle of the microwave-assisted pyrolysis is introduced. From the latest researches at home and abroad, four aspects of the microwave-assisted pyrolysis technology are highlighted: improving the gas production yield and the calorific value, effectively removing the tar, inhibiting the pollutant generation and reducing the system energy consumption. On this basis, the limitations of the tar model compounds and the problems in the tar conversion and removal are reviewed in detail. In view of the above problems, some scientific and reasonable suggestions are given. Combined with the development trend of the microwave pyrolysis gas production technology, the main development directions based on the future industrial applications such as accelerating the transformation from the theoretical and experimental research to the industrial application research are put forward.

Cite this article

JI Ke , WANG Xinzhu , GUO Jianxiang , BI Xuejun , LIU Bingbing , SUN Jinfei , LI Wenzhuo , LIU Yimin . Progress in microwave pyrolysis of biomass for gas production[J]. Science & Technology Review, 2021 , 39(24) : 54 -64 . DOI: 10.3981/j.issn.1000-7857.2021.24.007

References

[1] The State Council of the People's Republic of China. China's commitment to reduce emissions inspires global climate action[EB/OL].[2020-10-12]. http://www.gov.cn/xinwen/content_5550452.htm.
[2] Bui H H, Tran K Q, Chen W H. Pyrolysis of microalgae residues-A Kinetic study[J]. Bioresource Technology, 2015, 199:362-366.
[3] Liu C, Wu S L, Zhang H Y, et al. Catalytic oxidation of lignin to valuable biomass-based platform chemicals:A review[J]. Fuel Processing Technology, 2019, 191:181-201.
[4] 李佩聪.生物质发电的未来展望[J].能源, 2018(增刊1):159-161.
[5] 樊静丽,李佳,晏水平,等.我国生物质能-碳捕集与封存技术应用潜力分析[J].热力发电, 2021, 50(1):7-17.
[6] 贾爽,应浩,孙云娟,等.生物质水蒸气气化制取富氢合成气及其应用的研究进展[J].化工进展, 2018, 37(2):497-504.
[7] 赵振伟,陈雷,伊晓路,等.烘焙提升纤维素类生物质热解气化性能的研究进展[J].化工进展, 2021, 40(5):2509-2516.
[8] Liu W J, Li W W, Jiang H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9):6367-6398.
[9] Zhao X, Zhou H, Zhao M, et al. Biomass-based chemical looping technologies:The good, the bad and the future[J]. Energy and Environmental Science, 2017, 10:1885-1910.
[10] Chen L, Yu Z S, Xu H, et al. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives[J]. Bioresour Technology, 2019, 273:34-39.
[11] Kwon E K, Kim S, Lee J. Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment[J]. Journal of CO2 Utilization, 2019, 31:173-180.
[12] Chen W, Lin B, Huang M, et al. Thermochemical conversion of microalgal biomass into biofuels:A review[J]. Bioresour Technology, 2015, 184:314-327.
[13] Kumar G, Shobana S, Chen W H, et al. A review of thermochemical conversion of microalgal biomass for biofuels:Chemistry and processes[J]. Green Chemistry, 2017, 19:44-67.
[14] Septien S, Escudero Sanz F J, Salvador S, et al. The effect of pyrolysis heating rate on the steam gasification reactivity of char from woodchips[J]. Energy, 2018, 142:68-78.
[15] 董新新,金保昇.生物质燃气变换-甲烷化双功能催化剂研究进展[J].化工进展, 2019, 38(12):5360-5371.
[16] 姚彬,张文存,朱瑞龙.生物质能源制备合成气的技术探讨及研究现状[J].现代化工, 2021, 41(5):54-58.
[17] Zhang S P, Dong Q, Zhang L, et al. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts[J]. Bioresource Technology, 2015, 191:17-23.
[18] 彭好义,李志晴,沈贞,等.杨木微波热解产气特性实验研究[J].太阳能学报, 2020, 41(4):235-242.
[19] 曾媛,王允圃,张淑梅,等.生物质微波热解制备液体燃料和化学品的研究进展[J].化工进展, 2021,40(6):3151-3162.
[20] 辛子扬,葛立超,冯红翠,等.生物质微波热解利用技术综述[J].热力发电, 2019, 48(7):19-31.
[21] 王允圃,吴秋浩,曾子鸿,等.微波快速催化热解生物质制备富烃燃油的研究进展[J].现代化工, 2018, 38(3):23-27.
[22] 李攀,师晓鹏,宋建德,等.生物质微波催化热解制备高值产品的研究进展[J/OL].化工进展[2021-10-17]. https://doi.org/10.16085/j.issn.1000-6613.2021-0303.
[23] Hong Y, Chen W R, Luo X, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production[J]. Bioresource Technology, 2017, 237:47-56.
[24] Sait H H, Salema A A. Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies[J]. Fuel, 2015, 161:239-247.
[25] 郑照强.紫茎泽兰微波热解行为及产物综合利用研究[D].昆明:昆明理工大学, 2015.
[26] Mao X, Kang Q H, Liu Y, et al. Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor:Characterization and analyses of condensates and non-condensable gases[J]. Energy, 2019, 187:583-584.
[27] Shi K Q, Yan J F, Luo X, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in chemistry, 2020, 8:3.
[28] Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy&Fuels, 2020, 34(12):15557-15578.
[29] Li H, Li J, Fan X L, et al. Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation[J]. Fuel, 2019, 239(3):219-229.
[30] 黎静.微波场强化油砂与木屑共热解研究[D].天津:天津大学, 2019.
[31] Zhou C B, Zhang Y W, Liu Y, et al. Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation[J]. Energy, 2021, 218:119398.
[32] 张理,张书平,董庆,等.水洗-烘焙联合预处理对稻壳微波热解产品特性的影响[J].化工进展, 2015, 34(9):3286-3290.
[33] 赵振伟,陈雷,伊晓路,等.烘焙提升纤维素类生物质热解气化性能的研究进展[J].化工进展, 2021, 40(5):2509-2516.
[34] 曲磊,聂士伟,胡国荣,等.烘焙方式对生物质燃料特性的影响[J].太阳能学报, 2020, 41(8):364-369.
[35] 王鑫,张彪,赵丽萍,等.有氧辅助微波热解落叶松木材的特性及产物分布[J].林产化学与工业, 2020, 40(4):24-32.
[36] 吴爽,冯娅婷,秦智榛,等.铁铜钛金属氧化物辅助微波热解角叉菜制气研究[J].稀有金属与硬质合金, 2020, 48(3):54-59.
[37] Zhou N, Zhou J W, Dai L L, et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system[J]. Bioresource Technology, 2020, 314:123756.
[38] Luo J, Sun S C, Chen X, et al. In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis[J]. Applied Energy, 2021, 292:116941.
[39] 陈权.生物质三组分微波热解研究[D].昆明:昆明理工大学, 2020.
[40] Sun J, Wang Q, Wang W, et al. Exploiting the photocatalytic effect of microwave-metal discharges for the destruction of a tar model compound[J]. Energy Fuels, 2018, 32:241-245.
[41] 董庆.基于微波加热的竹材生物质热解机理及特性研究[D].南京:东南大学, 2015.
[42] Rakesh N, Dasappa S. A critical assessment of tar generated during biomass gasification:Formation, evaluation, issues and mitigation strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 91:1045-1064.
[43] Liu W J, Li W W, Jiang H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9):6367-6398.
[44] Wang Y, Jiang L, Hu S, et al. Evolution of structure and activity of char-supported iron catalysts prepared for steam reforming of bio-oil[J]. Fuel Process Technol, 2017, 158:180-190.
[45] Guan G, Kaewpanda M, Hao X, et al. Catalytic steam reforming of biomass tar:prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 58:450-461.
[46] 冯冬冬.多活性位焦炭原位催化裂解生物质焦油的反应机理研究[D].哈尔滨:哈尔滨工业大学, 2018.
[47] Chen G Y, Li J, Cheng Z J, et al. Investigation on model compound of biomass gasification tar cracking in microwave furnace:Comparative research[J]. Applied Energy, 2018, 217:249-257.
[48] Chun Y N, Song H G. Microwave-induced cracking and reforming of benzene on activated carbon[J]. Chemical Engineering and Processing-Process Intensification, 2019, 135:148-155.
[49] 黄荐,高瑞,许建良,等.焦油热解反应模拟研究[J].高校化学工程学报, 2019, 33(3):587-593.
[50] Guo F, Peng K, Liang S, et al. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis[J]. Fuel, 2019, 258:116204.
[51] Guo F Q, Jia X P, Liang S, et al. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J]. Bioresource Technology, 2019, 298:122263.
[52] Dong Q, Li H, Zhang S, et al. Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating[J]. RSC Advances, 2018, 8(71):40873-40882.
[53] Dong Q, Niu M M, Bi D M, et al. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production[J]. Bioresource Technology, 2018, 256:145-151.
[54] Xin S Z, Zhang Y H, Duan L H. Microwave-assisted calcined olivine catalyst steam reforming of tar for hydrogen production[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2020:1-8.
[55] Li J, Jiao L G, Tao J Y, et al. Can microwave treat biomass tar?A comprehensive study based on experimental and net energy analysis[J]. Applied Energy, 2020, 272:1-11.
[56] 马帅,胡笑颖,董长青,等.生物质焦油模型化合物脱除研究进展[J].林产化学与工业, 2019, 39(4):1-8.
[57] Beneroso D, Bermudez J M, Arenillas A, et al. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production[J]. Bioresource Technology, 2016, 218:687-691.
[58] 王嫣云.页岩气开发油基钻屑-单组份生物质共热解特性研究[D].武汉:武汉理工大学, 2018.
[59] 黄思雨,王嫣云,周博逊,等.页岩气开发油基钻屑-单组分生物质共热解特性[J].环境科学研究, 2019, 32(6):1074-1080.
[60] 周建强.麦秆热解过程中有机氮转化机理研究[D].北京:华北电力大学(北京), 2019.
[61] Gao Q J, Budarin V L, Cieplik M K, et al. PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass-distribution among solid, liquid and gaseous phases and effects of material composition[J]. Chemosphere, 2016, 145:193-199.
[62] Gao Q J, Budarin V L, Cieplik M K, et al. Mechanistic evaluation of polychlorinated dibenzo-p-dioxin, dibenzofuran and naphthalene isomer fingerprints in microwave pyrolysis of biomass[J]. Chemosphere, 2016, 150:168-175.
[63] Gautam R, Shyam S, Reddy B R, et al. Microwave-assisted pyrolysis and analytical fast pyrolysis of macroalge:Product analysis and effect of heating mechanism[J]. Sustainable Eenergy&Fuels, 2019, 3:3009-3020.
[64] 张军.微波热解污水污泥过程中氮转化途径及调控策略[D].哈尔滨:哈尔滨工业大学, 2013.
[65] Zhang J, Tian Y, Cui Y N, et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresource Technology, 2013, 132:57-63.
[66] Liu T T, Guo Y C, Peng N N, et al. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126:298-306.
[67] 权熙,张军,尹琳琳,等.污泥微波热解与传统热解过程硫转化途径解析[J].环境卫生工程, 2020, 28(4):110.
[68] Yang Z, Qian K, Zhang X, et al. Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes[J]. Energy, 2018, 154:289-297.
[69] Sun J, Wang W L, Yue Q Y, et al. Review on microwave-metal discharges and their applications in energy and industrial processes[J]. Applied Energy, 2016, 175:141-157.
[70] Helen T, Gislaine F, Thamarys S, et al. Utilising biomass in biotechnology[M]. Berlin:Springer International Publishing, 2020.
[71] Peng L Y, Appels L, Su H J. Combining microwave irradiation with sodium citrate addition improves the pretreatment on anaerobic digestion of excess sewage sludge[J]. Journal of Environmental Management, 2018, 213:271-278.
[72] Guo F Q, Dong Y C, Tian B L, et al. Applications of microwave energy in gas production and tar removal during biomass gasifification[J]. Sustainable Energy Fuels, 2020, 4:5927-5946.
[73] Menendez J A, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology, 2009, 91(1):1-8.
[74] Motasemi F, Muhammad T A. A review on the microwave-assisted pyrolysis technique[J]. Renewable and Sustainable Energy Reviews, 2013, 28:317-330.
[75] Rpbinson J P, Snape C E, Kingman S W. Developing high power microwave processing as an effective technology for the thermo-chemical conversion of biodegradable municipal waste:Technology research and innovation fund project report[R]. Nottingham:University of Nottingham, 2010.
[76] 张彦军,郑闰,张超凡,等.煤炭微波热解技术研究进展[J].煤炭科学技术, 2017, 45(12):205-211.
[77] Liang X H, Liu W, Cheng Y, et al. Review:Rcent process in the design of carbon-based nanostructures with optimized electromagnetic properties[J]. Journal of Alloys and Compounds, 2018, 749:887-899.
[78] Ellison C, Trabelsi S, Boldor D, et al. Dielectric properties of biomass/biochar mixtures at microwave frequencies[J]. Energies, 2017, 10(4):502.
[79] Beneroso D, Albero O A, Arenillas A, et al. Dielectric characterization of biodegradable wastes during pyrolysis[J]. Fuel, 2016, 172:146-152.
[80] Ellison C, Mckeown M S, Trabelsi S, et al. Dielectric characterization of bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum[J]. Journal of Microwave Power and Electromagnetic Energy, 2018, 52(1):3-15.
[81] Liu Y R, Lin Y, Yang H B. Facile fabrication for coreshell BaFe12O19@C composites with excellent microwave absorption properties[J]. Journal of Alloys and Compounds, 2019, 805:130-137.
[82] Mitani T. Recent progress on microwave processing of biomass for bioenergy production[J]. Journal of the Japan Petroleum Institute, 2018, 61(2):113-120.
[83] Motasemi F, Afzal M T, Salema A A. Microwave dielectric characterization of hay during pyrolysis[J]. Industrial Crops and Products, 2014, 61:492-498.
[84] Salema A A, Ishaque K, Ani F N, et al. Dielectric properties and microwave heating of oil palm biomass and biochar[J]. Industrial Crops&Products, 2013, 50:366-374.
[85] Tripathi M, Sahu J N, Ganesan P, et al. Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:306-312.
[86] Li K Q, Chen J, Chen G, et al. Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore[J]. Bioresource Technology, 2019, 286:121381.
[87] Salema A A, Ani F N, Mouris J, et al. Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process[J]. Fuel Processing Technology, 2017, 166:164-173.
[88] Nizamuddin S, Mubarak N M, Tiripathi M, et al. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell[J]. Fuel, 2016, 163:88-97.
[89] Li J F, Zhang N, Zhao H T, et al. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption[J/OL]. Journal of Materials Science:Materials in Electronics, 2020[2020-10-19]. https://doi.org/10.1007/s10854-020-04571-5.
[90] Mathiarasu A, Pugazhvadivu M. Studies on dielectric properties and microwave pyrolysis of karanja seed[J]. Biomass Conversion and Biorefinery, 2021(3):1-11.
Outlines

/