[1] The State Council of the People's Republic of China. China's commitment to reduce emissions inspires global climate action[EB/OL].[2020-10-12]. http://www.gov.cn/xinwen/content_5550452.htm.
[2] Bui H H, Tran K Q, Chen W H. Pyrolysis of microalgae residues-A Kinetic study[J]. Bioresource Technology, 2015, 199:362-366.
[3] Liu C, Wu S L, Zhang H Y, et al. Catalytic oxidation of lignin to valuable biomass-based platform chemicals:A review[J]. Fuel Processing Technology, 2019, 191:181-201.
[4] 李佩聪.生物质发电的未来展望[J].能源, 2018(增刊1):159-161.
[5] 樊静丽,李佳,晏水平,等.我国生物质能-碳捕集与封存技术应用潜力分析[J].热力发电, 2021, 50(1):7-17.
[6] 贾爽,应浩,孙云娟,等.生物质水蒸气气化制取富氢合成气及其应用的研究进展[J].化工进展, 2018, 37(2):497-504.
[7] 赵振伟,陈雷,伊晓路,等.烘焙提升纤维素类生物质热解气化性能的研究进展[J].化工进展, 2021, 40(5):2509-2516.
[8] Liu W J, Li W W, Jiang H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9):6367-6398.
[9] Zhao X, Zhou H, Zhao M, et al. Biomass-based chemical looping technologies:The good, the bad and the future[J]. Energy and Environmental Science, 2017, 10:1885-1910.
[10] Chen L, Yu Z S, Xu H, et al. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives[J]. Bioresour Technology, 2019, 273:34-39.
[11] Kwon E K, Kim S, Lee J. Pyrolysis of waste feedstocks in CO2 for effective energy recovery and waste treatment[J]. Journal of CO2 Utilization, 2019, 31:173-180.
[12] Chen W, Lin B, Huang M, et al. Thermochemical conversion of microalgal biomass into biofuels:A review[J]. Bioresour Technology, 2015, 184:314-327.
[13] Kumar G, Shobana S, Chen W H, et al. A review of thermochemical conversion of microalgal biomass for biofuels:Chemistry and processes[J]. Green Chemistry, 2017, 19:44-67.
[14] Septien S, Escudero Sanz F J, Salvador S, et al. The effect of pyrolysis heating rate on the steam gasification reactivity of char from woodchips[J]. Energy, 2018, 142:68-78.
[15] 董新新,金保昇.生物质燃气变换-甲烷化双功能催化剂研究进展[J].化工进展, 2019, 38(12):5360-5371.
[16] 姚彬,张文存,朱瑞龙.生物质能源制备合成气的技术探讨及研究现状[J].现代化工, 2021, 41(5):54-58.
[17] Zhang S P, Dong Q, Zhang L, et al. High quality syngas production from microwave pyrolysis of rice husk with char-supported metallic catalysts[J]. Bioresource Technology, 2015, 191:17-23.
[18] 彭好义,李志晴,沈贞,等.杨木微波热解产气特性实验研究[J].太阳能学报, 2020, 41(4):235-242.
[19] 曾媛,王允圃,张淑梅,等.生物质微波热解制备液体燃料和化学品的研究进展[J].化工进展, 2021,40(6):3151-3162.
[20] 辛子扬,葛立超,冯红翠,等.生物质微波热解利用技术综述[J].热力发电, 2019, 48(7):19-31.
[21] 王允圃,吴秋浩,曾子鸿,等.微波快速催化热解生物质制备富烃燃油的研究进展[J].现代化工, 2018, 38(3):23-27.
[22] 李攀,师晓鹏,宋建德,等.生物质微波催化热解制备高值产品的研究进展[J/OL].化工进展[2021-10-17]. https://doi.org/10.16085/j.issn.1000-6613.2021-0303.
[23] Hong Y, Chen W R, Luo X, et al. Microwave-enhanced pyrolysis of macroalgae and microalgae for syngas production[J]. Bioresource Technology, 2017, 237:47-56.
[24] Sait H H, Salema A A. Microwave dielectric characterization of Saudi Arabian date palm biomass during pyrolysis and at industrial frequencies[J]. Fuel, 2015, 161:239-247.
[25] 郑照强.紫茎泽兰微波热解行为及产物综合利用研究[D].昆明:昆明理工大学, 2015.
[26] Mao X, Kang Q H, Liu Y, et al. Microwave-assisted pyrolysis of furfural residue in a continuously operated auger reactor:Characterization and analyses of condensates and non-condensable gases[J]. Energy, 2019, 187:583-584.
[27] Shi K Q, Yan J F, Luo X, et al. Production of H2-rich syngas from lignocellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming[J]. Frontiers in chemistry, 2020, 8:3.
[28] Wang G Y, Dai Y J, Yang H P, et al. A review of recent advances in biomass pyrolysis[J]. Energy&Fuels, 2020, 34(12):15557-15578.
[29] Li H, Li J, Fan X L, et al. Insights into the synergetic effect for co-pyrolysis of oil sands and biomass using microwave irradiation[J]. Fuel, 2019, 239(3):219-229.
[30] 黎静.微波场强化油砂与木屑共热解研究[D].天津:天津大学, 2019.
[31] Zhou C B, Zhang Y W, Liu Y, et al. Co-pyrolysis of textile dyeing sludge and red wood waste in a continuously operated auger reactor under microwave irradiation[J]. Energy, 2021, 218:119398.
[32] 张理,张书平,董庆,等.水洗-烘焙联合预处理对稻壳微波热解产品特性的影响[J].化工进展, 2015, 34(9):3286-3290.
[33] 赵振伟,陈雷,伊晓路,等.烘焙提升纤维素类生物质热解气化性能的研究进展[J].化工进展, 2021, 40(5):2509-2516.
[34] 曲磊,聂士伟,胡国荣,等.烘焙方式对生物质燃料特性的影响[J].太阳能学报, 2020, 41(8):364-369.
[35] 王鑫,张彪,赵丽萍,等.有氧辅助微波热解落叶松木材的特性及产物分布[J].林产化学与工业, 2020, 40(4):24-32.
[36] 吴爽,冯娅婷,秦智榛,等.铁铜钛金属氧化物辅助微波热解角叉菜制气研究[J].稀有金属与硬质合金, 2020, 48(3):54-59.
[37] Zhou N, Zhou J W, Dai L L, et al. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system[J]. Bioresource Technology, 2020, 314:123756.
[38] Luo J, Sun S C, Chen X, et al. In-depth exploration of the energy utilization and pyrolysis mechanism of advanced continuous microwave pyrolysis[J]. Applied Energy, 2021, 292:116941.
[39] 陈权.生物质三组分微波热解研究[D].昆明:昆明理工大学, 2020.
[40] Sun J, Wang Q, Wang W, et al. Exploiting the photocatalytic effect of microwave-metal discharges for the destruction of a tar model compound[J]. Energy Fuels, 2018, 32:241-245.
[41] 董庆.基于微波加热的竹材生物质热解机理及特性研究[D].南京:东南大学, 2015.
[42] Rakesh N, Dasappa S. A critical assessment of tar generated during biomass gasification:Formation, evaluation, issues and mitigation strategies[J]. Renewable and Sustainable Energy Reviews, 2018, 91:1045-1064.
[43] Liu W J, Li W W, Jiang H, et al. Fates of chemical elements in biomass during its pyrolysis[J]. Chemical Reviews, 2017, 117(9):6367-6398.
[44] Wang Y, Jiang L, Hu S, et al. Evolution of structure and activity of char-supported iron catalysts prepared for steam reforming of bio-oil[J]. Fuel Process Technol, 2017, 158:180-190.
[45] Guan G, Kaewpanda M, Hao X, et al. Catalytic steam reforming of biomass tar:prospects and challenges[J]. Renewable and Sustainable Energy Reviews, 2016, 58:450-461.
[46] 冯冬冬.多活性位焦炭原位催化裂解生物质焦油的反应机理研究[D].哈尔滨:哈尔滨工业大学, 2018.
[47] Chen G Y, Li J, Cheng Z J, et al. Investigation on model compound of biomass gasification tar cracking in microwave furnace:Comparative research[J]. Applied Energy, 2018, 217:249-257.
[48] Chun Y N, Song H G. Microwave-induced cracking and reforming of benzene on activated carbon[J]. Chemical Engineering and Processing-Process Intensification, 2019, 135:148-155.
[49] 黄荐,高瑞,许建良,等.焦油热解反应模拟研究[J].高校化学工程学报, 2019, 33(3):587-593.
[50] Guo F, Peng K, Liang S, et al. Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis[J]. Fuel, 2019, 258:116204.
[51] Guo F Q, Jia X P, Liang S, et al. Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification[J]. Bioresource Technology, 2019, 298:122263.
[52] Dong Q, Li H, Zhang S, et al. Biomass tar cracking and syngas production using rice husk char-supported nickel catalysts coupled with microwave heating[J]. RSC Advances, 2018, 8(71):40873-40882.
[53] Dong Q, Niu M M, Bi D M, et al. Microwave-assisted catalytic pyrolysis of moso bamboo for high syngas production[J]. Bioresource Technology, 2018, 256:145-151.
[54] Xin S Z, Zhang Y H, Duan L H. Microwave-assisted calcined olivine catalyst steam reforming of tar for hydrogen production[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2020:1-8.
[55] Li J, Jiao L G, Tao J Y, et al. Can microwave treat biomass tar?A comprehensive study based on experimental and net energy analysis[J]. Applied Energy, 2020, 272:1-11.
[56] 马帅,胡笑颖,董长青,等.生物质焦油模型化合物脱除研究进展[J].林产化学与工业, 2019, 39(4):1-8.
[57] Beneroso D, Bermudez J M, Arenillas A, et al. Microwave-induced cracking of pyrolytic tars coupled to microwave pyrolysis for syngas production[J]. Bioresource Technology, 2016, 218:687-691.
[58] 王嫣云.页岩气开发油基钻屑-单组份生物质共热解特性研究[D].武汉:武汉理工大学, 2018.
[59] 黄思雨,王嫣云,周博逊,等.页岩气开发油基钻屑-单组分生物质共热解特性[J].环境科学研究, 2019, 32(6):1074-1080.
[60] 周建强.麦秆热解过程中有机氮转化机理研究[D].北京:华北电力大学(北京), 2019.
[61] Gao Q J, Budarin V L, Cieplik M K, et al. PCDDs, PCDFs and PCNs in products of microwave-assisted pyrolysis of woody biomass-distribution among solid, liquid and gaseous phases and effects of material composition[J]. Chemosphere, 2016, 145:193-199.
[62] Gao Q J, Budarin V L, Cieplik M K, et al. Mechanistic evaluation of polychlorinated dibenzo-p-dioxin, dibenzofuran and naphthalene isomer fingerprints in microwave pyrolysis of biomass[J]. Chemosphere, 2016, 150:168-175.
[63] Gautam R, Shyam S, Reddy B R, et al. Microwave-assisted pyrolysis and analytical fast pyrolysis of macroalge:Product analysis and effect of heating mechanism[J]. Sustainable Eenergy&Fuels, 2019, 3:3009-3020.
[64] 张军.微波热解污水污泥过程中氮转化途径及调控策略[D].哈尔滨:哈尔滨工业大学, 2013.
[65] Zhang J, Tian Y, Cui Y N, et al. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge:A protein model compound study[J]. Bioresource Technology, 2013, 132:57-63.
[66] Liu T T, Guo Y C, Peng N N, et al. Nitrogen transformation among char, tar and gas during pyrolysis of sewage sludge and corresponding hydrochar[J]. Journal of Analytical and Applied Pyrolysis, 2017, 126:298-306.
[67] 权熙,张军,尹琳琳,等.污泥微波热解与传统热解过程硫转化途径解析[J].环境卫生工程, 2020, 28(4):110.
[68] Yang Z, Qian K, Zhang X, et al. Process design and economics for the conversion of lignocellulosic biomass into jet fuel range cycloalkanes[J]. Energy, 2018, 154:289-297.
[69] Sun J, Wang W L, Yue Q Y, et al. Review on microwave-metal discharges and their applications in energy and industrial processes[J]. Applied Energy, 2016, 175:141-157.
[70] Helen T, Gislaine F, Thamarys S, et al. Utilising biomass in biotechnology[M]. Berlin:Springer International Publishing, 2020.
[71] Peng L Y, Appels L, Su H J. Combining microwave irradiation with sodium citrate addition improves the pretreatment on anaerobic digestion of excess sewage sludge[J]. Journal of Environmental Management, 2018, 213:271-278.
[72] Guo F Q, Dong Y C, Tian B L, et al. Applications of microwave energy in gas production and tar removal during biomass gasifification[J]. Sustainable Energy Fuels, 2020, 4:5927-5946.
[73] Menendez J A, Arenillas A, Fidalgo B, et al. Microwave heating processes involving carbon materials[J]. Fuel Processing Technology, 2009, 91(1):1-8.
[74] Motasemi F, Muhammad T A. A review on the microwave-assisted pyrolysis technique[J]. Renewable and Sustainable Energy Reviews, 2013, 28:317-330.
[75] Rpbinson J P, Snape C E, Kingman S W. Developing high power microwave processing as an effective technology for the thermo-chemical conversion of biodegradable municipal waste:Technology research and innovation fund project report[R]. Nottingham:University of Nottingham, 2010.
[76] 张彦军,郑闰,张超凡,等.煤炭微波热解技术研究进展[J].煤炭科学技术, 2017, 45(12):205-211.
[77] Liang X H, Liu W, Cheng Y, et al. Review:Rcent process in the design of carbon-based nanostructures with optimized electromagnetic properties[J]. Journal of Alloys and Compounds, 2018, 749:887-899.
[78] Ellison C, Trabelsi S, Boldor D, et al. Dielectric properties of biomass/biochar mixtures at microwave frequencies[J]. Energies, 2017, 10(4):502.
[79] Beneroso D, Albero O A, Arenillas A, et al. Dielectric characterization of biodegradable wastes during pyrolysis[J]. Fuel, 2016, 172:146-152.
[80] Ellison C, Mckeown M S, Trabelsi S, et al. Dielectric characterization of bentonite clay at various moisture contents and with mixtures of biomass in the microwave spectrum[J]. Journal of Microwave Power and Electromagnetic Energy, 2018, 52(1):3-15.
[81] Liu Y R, Lin Y, Yang H B. Facile fabrication for coreshell BaFe12O19@C composites with excellent microwave absorption properties[J]. Journal of Alloys and Compounds, 2019, 805:130-137.
[82] Mitani T. Recent progress on microwave processing of biomass for bioenergy production[J]. Journal of the Japan Petroleum Institute, 2018, 61(2):113-120.
[83] Motasemi F, Afzal M T, Salema A A. Microwave dielectric characterization of hay during pyrolysis[J]. Industrial Crops and Products, 2014, 61:492-498.
[84] Salema A A, Ishaque K, Ani F N, et al. Dielectric properties and microwave heating of oil palm biomass and biochar[J]. Industrial Crops&Products, 2013, 50:366-374.
[85] Tripathi M, Sahu J N, Ganesan P, et al. Effect of microwave frequency on dielectric properties of oil palm shell (OPS) and OPS char synthesized by microwave pyrolysis of OPS[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112:306-312.
[86] Li K Q, Chen J, Chen G, et al. Microwave dielectric properties and thermochemical characteristics of the mixtures of walnut shell and manganese ore[J]. Bioresource Technology, 2019, 286:121381.
[87] Salema A A, Ani F N, Mouris J, et al. Microwave dielectric properties of Malaysian palm oil and agricultural industrial biomass and biochar during pyrolysis process[J]. Fuel Processing Technology, 2017, 166:164-173.
[88] Nizamuddin S, Mubarak N M, Tiripathi M, et al. Chemical, dielectric and structural characterization of optimized hydrochar produced from hydrothermal carbonization of palm shell[J]. Fuel, 2016, 163:88-97.
[89] Li J F, Zhang N, Zhao H T, et al. Cornstalk-derived macroporous carbon materials with enhanced microwave absorption[J/OL]. Journal of Materials Science:Materials in Electronics, 2020[2020-10-19]. https://doi.org/10.1007/s10854-020-04571-5.
[90] Mathiarasu A, Pugazhvadivu M. Studies on dielectric properties and microwave pyrolysis of karanja seed[J]. Biomass Conversion and Biorefinery, 2021(3):1-11.