[1] National Ignition Facility experiment puts researchers at threshold of fusion ignition[EB/OL].(2021-08-18)[2021-12-01].https://www.llnl.gov/news/national-ignition-facility-experiment-puts-researchers-threshold-fusion-ignition.
[2] Stockman M I.Nanoplasmonics:Past, present, and glimpse into future[J].Optics Express, 2011, 19(22):22029-22106.
[3] Halas N J, Lal S, Chang W S, et al.Plasmons in strongly coupled metallic nanostructures[J].Chemical Reviews, 2011, 111(6):3913-3961.
[4] Valev V K, Baumberg J J, Sibilia C, et al.Chirality and chiroptical effects in plasmonic nanostructures:Fundamentals, recent progress, and outlook[J].Advanced Materials, 2013, 25(18):2517-2534.
[5] Zhang Y F, Fowler C F, Liang J H, et al.Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J].Nature Nanotechnology, 2021, 16(6):661.
[6] Guo X, Zhong J, Li B, et al.Full-color holographic display and encryption with full-polarization degree of freedom[J].Advanced Materials, 2021, 5742(5742):130-139.
[7] Rolland J P, Davies M A, Suleski T J, et al.Freeform optics for imaging[J].Optica, 2021, 8(2):161-176.
[8] Nikolov D K, Bauer A, Cheng F, et al.Metaform optics:Bridging nanophotonics and freeform optics[J].Science Advances, 2021, 7(18):eabe5112.
[9] Zeng S N, Pian S J, Su M Y, et al.Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J].Science, 2021, 373(6555):692-696.
[10] Camacho-Morales R, Rocco D, Xu L, et al.Infrared upconversion imaging in nonlinear metasurfaces[J].Advanced Photonics, 2021, 3(3):036002.
[11] Ma W L, Hu G W, Hu D B, et al.Ghost hyperbolic surface polaritons in bulk anisotropic crystals[J].Nature, 2021, 596(7872):362-366.
[12] Tian H, Liu J Q, Siddharth A, et al.Magnetic-free silicon nitride integrated optical isolator[J].Nature Photonics, 2021, 15(11):828-836.
[13] Danson C N, Haefner C, Bromage J, et al.Petawatt and exawatt class lasers worldwide[J].High Power Laser Science and Engineering, 2019, 7(3):1-53.
[14] Li Z Y, Kato Y, Kawanaka J.Simulating an ultra-broadband concept for Exawatt-class lasers[J].Scientific Reports, 2021, 11:151.
[15] 神光Ⅱ设施第九路皮秒拍瓦开展激光驱动质子加速实验取得重大进展[EB/OL].(2021-11-22)[2021-12-01].http://www.siom.cas.cn/xwzx/kydt/202111/t20211123_6267460.html.
[16] US Army demonstrates first laser weapon in "combat shoot-off"[EB/OL].(2021-08-18)[2021-12-01].https://optics.org/news/12/8/23.
[17] Wang W T, Feng K, Ke L T, et al.Free electron lasing at 27 nanometers based on a laser wakefield accelerator[J].Nature, 2021, 595(7868):516.
[18] Zhong H Z, Qian L J, Dai S Y, et al.Polarization-insensitive, high-gain parametric amplification of radially polarized femtosecond pulses[J].Optica, 2021, 8(1):62-69.
[19] Fang Y Q, Han M, Ge P P, et al.Photoelectronic mapping of the spin-orbit interaction of intense light fields[J].Nature Photonics, 2021, 15(2):115-120.
[20] Liu J D, Charlotte Z, Liu X P, et al.Coded-aperture broadband light field imaging using digital micromirror devices[J].Optica, 2021, 8(2):139-142.
[21] Zhou Z H, Liu W, He J J, et al.Far-field super-resolution imaging by nonlinearly excited evanescent waves[J].Advanced Photonics, 2021, 3(2):025001.
[22] Dong J R, Lu Y X, Xu Y, et al.Direct imaging of single-molecule electrochemical reactions in solution[J].Nature, 2021, 596:244-249.
[23] Wang B, Zheng M Y, Han J J, et al.Non-line-of-sight imaging with picosecond temporal resolution[J].Physical Review Letters, 2021, 127(5):053602.
[24] Liu X T, Wang J Y, Li Z P, et al.Non-line-of-sight reconstruction with signal-object collaborative regularization[J].Light:Science & Applications, 2021, 10:198.
[25] Wu J M, Lu Z, Jiang D, et al.Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J].Cell, 2021, 184(12):3318-3332.
[26] Zhong Q Y, Li A N, Jin R, et al.High-definition imaging using line-illumination modulation microscopy[J].Nature Methods, 2021, 18(3):309-315.
[27] Ding P P, Yao Y H, Qi D L, et al.Single-shot spectralvolumetric compressed ultrafast photography[J].Advanced Photonics, 2021, 3(4):045001.
[28] Kim K, Bittner S, Zeng Y, et al.Massively parallel ultrafast random bit generation with a chip-scale laser[J].Science, 2021, 371(6532):948-952.
[29] Liu X, Hu J, Li Z F, et al.Heralded entanglement distribution between two absorptive quantum memories[J].Nature, 2021, 594(7861):41-45.
[30] Pittaluga M, Minder M, Lucamarini M, et al.600-km repeater-like quantum communications with dual-band stabilization[J].Nature Photonics, 2021, 15(7):530.
[31] Luo L, Cheng D, Song B Q, et al.A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5[J].Nature Materials, 2021, 20(3):329-334.
[32] Liu H Y, Tian X H, Gu C S, et al.Drone-based entanglement distribution towards mobile quantum networks[J].National Science Review, 2020, 7(5):921-928.
[33] Liu H Y, Tian X H, Gu C S, et al.Optical-relayed entanglement distribution using drones as mobile nodes[J].Physical Review Letters, 2021, 126:020503.
[34] Hearing the Light[EB/OL].(2021-10-01)[2021-12-01].https://www.optica-opn.org/home/articles/volume_32/october_2021/features/hearing_the_light/.
[35] Goswami N, He Y H R, Deng Y, et al.Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity[J].Light:Science & Applications, 2021, 10(1):176.
[36] Zhang C H, Dong H Y, Zhang C, et al.Photonic skins based on flexible organic microlaser arrays[J].Science Advances, 2021, 7(31):eabh3530.
[37] Casacio C A, Madsen L S, Terrasson A, et al.Quantumenhanced nonlinear microscopy[J].Nature, 2021, 594(7862):201-206.
[38] Chen R H, Huang S S, Lin T T, et al.Photoacoustic molecular imaging-escorted adipose photodynamic-browning synergy for fighting obesity with virus-like complexes[J].Nature Nanotechnology, 2021, 16(4):455-465.
[39] Scientists create device that uses laser tweezers to trap viruses[EB/OL].(2021-11-01)[2021-12-01].https://optics.org/news/12/10/43.
[40] Li J G, Chen Z H, Liu Y R, et al.Opto-refrigerative tweezers[J].Science Advances, 2021, 7(26):eabh1101.
[41] Dai X, Fu W H, Chi H Y, et al.Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures[J].Nature Communications, 2021, 12(1):1292.
[42] Konishi H, Roux K, Helson V, et al.Universal pair-polaritons in a strongly interacting Fermi gas[J].Nature, 2021, 596(7873):509-513.
[43] Li Q W, Bao W, Nie Z Y, et al.A non-unitary metasurface enables continuous control of quantum photon-photon interactions from bosonic to fermionic[J].Nature Photonics, 2021, 15(4):267-271.
[44] Li G Z, Zheng Y L, Dutt A, et al.Dynamic band structure measurement in the synthetic space[J].Science Advances, 2021, 7(2):eabe4335.
[45] Yao J P, Wang L J, Chen J M, et al.Photon retention in coherently excited nitrogen ions[J].Science Bulletin, 2021, 66(15):1511-1517.
[46] Tradonsky C, Mahler S, Cai G D, et al.High-resolution digital spatial control of a highly multimode laser[J].Optica, 2021, 8(6):880-884.
[47] Yu S F, Zhang Z, Xia H Y, et al.Photon-counting distributed free-space spectroscopy[J].Light:Science & Applications, 2021, 10:212.
[48] Efremidis N, Goutsoulas M, Bongiovanni D, et al.Tunable self-similar Bessel-like beams of arbitrary order[J].Optics Letters, 2020, 45(7):1830-1833.
[49] Bongiovanni D, Li D H, Goutsoulas M, et al.Free-space realization of tunable pin-like optical vortex beams[J].Photonics Research, 2021, 9(7):1204-1212.
[50] Christopher S, Qian Y, Xue D, et al.Chirped dissipative solitons in driven optical resonators[J].Optica, 2021, 8(6):861-869.
[51] Liang C H, Ponomarenko S A, Wang F, et al.Temporal boundary solitons and extreme super thermal light statistics[J].Physical Review Letters, 2021, 127:053901.
[52] Salmela L, Tsipinakis N, Foi A, et al.Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network[J].Nature Machine Intelligence, 2021, 3(4):344.
[53] Genty G, Salmela L, Dudley J M, et al.Machine learning and applications in ultrafast photonics[J].Nature Photonics, 2021, 15(2):91-101.
[54] Tong L, Peng Z R, Lin R F, et al.2D materials-based homogeneous transistor-memory architecture for neuromorphic hardware[J].Science, 2021, 373(6561):1353-1358.
[55] Altaqui A, Sen P, Schrickx H, et al.Mantis shrimp-inspired organic photodetector for simultaneous hyperspectral and polarimetric imaging[J].Science Advances, 2021, 7(10):eabe3196.
[56] Liang Y Z, Sun H J, Cheng L H, et al.High spatiotemporal resolution optoacoustic sensing with photothermally induced acoustic vibrations in optical fibres[J].Nature Communications, 2021, 12:4139.
[57] Zhang B L, Ma Z Z, Ma J L, et al.1.4-mJ high energy terahertz radiation from lithium niobates[J].Laser & Photonics Reviews, 2021, 15(3):2000295.
[58] Zeng H X, Liang H J, Zhang Y X, et al.High-precision digital terahertz phase manipulation within a multichannel field perturbation coding chip[J].Nature Photonics, 2021, 15(10):751-757.
[59] Xu H X, Yan L X, Du Y C, et al.Cascaded high-gradient terahertz-driven acceleration of relativistic electron beams[J].Nature Photonics, 2021, 15(6):426-430.
[60] Li N X, Niu X X, Li L, et al.Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility[J].Science, 2021, 373(6554):561-567.
[61] Shi X, Zuo Y, Zhai P, et al.Large-area display textiles integrated with functional systems[J].Nature, 2021, 591:240-245.
[62] Zhou B, Yan L, Huang J S, et al.NIR II-responsive photon upconversion through energy migration in an ytterbium sublattice[J].Nature Photonics, 2021, 14:760-766.
[63] Liu M M, Wan Q, Wang H M, et al.Suppression of temperature quenching in perovskite nanocrystals for efficient and thermally stable light-emitting diodes[J].Nature Photonics, 2021, 15(5):379-385.
[64] Chen J W, Wang J, Xu X B, et al.Efficient and bright white light-emitting diodes based on single-layer heterophase halide perovskites[J].Nature Photonics, 2021, 15(3):238-244.
[65] Xia S Q, Kaltsas D, Song D H, et al.Nonlinear tuning of PT symmetry and non-Hermitian topological states[J].Science, 2021, 372(6537):72-76.
[66] Liu Y, Leung S, Li F F, et al.Bulk-disclination correspondence in topological crystalline insulators[J].Nature, 2021, 589(7842):381-385.
[67] Optics in 2021[EB/OL].(2021-12-01)[2021-12-05].https://www.optica-opn.org/home/articles/volume_32/december_2021/features/optics_in_2021/.
[68] 中国光学十大进展2021年候选成果推荐[EB/OL].(2021-11-29)[2021-12-01].http://www.opticsjournal.net/Columns/ZGGX?type=lntjList&year=2021.