Exclusive: Science and Technology Review in 2021

Review of research focuses on bioscience in 2021

  • JIANG Jiayan ,
  • ZHU Fang ,
  • LI Cong ,
  • WANG Chengcheng ,
  • HU Ronggui
Expand
  • 1. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China;
    2. Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Shanghai 200032, China;
    3. Medical School, Guizhou University, Guiyang 550025, China

Received date: 2021-12-03

  Revised date: 2021-12-31

  Online published: 2022-02-18

Abstract

Human activities in the broad area of sci-tech research have continued despite the still rampant global COVID-19 pandemic. In the past 2021, significant progress was made in bioscience and many related disciplines. This review highlights a few breakthroughs that directly addressed both immediate and long term needs of humans in facing those contingent and constant challenges. Specifically, we briefly present to the reader the progress made in the fields of theoretical and practical structure biology, chemical biology, COVID-19 antibody development, application of gene editing techniques, drug treatment for human mental disorders and development in imaging techniques. 2021 will be remembered for those Chinese scientists who made their particular contributions to the frontier research.

Cite this article

JIANG Jiayan , ZHU Fang , LI Cong , WANG Chengcheng , HU Ronggui . Review of research focuses on bioscience in 2021[J]. Science & Technology Review, 2022 , 40(1) : 96 -112 . DOI: 10.3981/j.issn.1000-7857.2022.01.005

References

[1] Jumpe J, Evans R, Prizel A, et al.Highly accurate protein structure prediction with AlphaFold[J].Nature, 2021, 596(7873):583-589.
[2] Thomas M C, Chiang C M.The general transcription machinery and general cofactors[J].Critical Reviews in Biochemistry and Molecular Biology, 2006, 41(3):105-178.
[3] Buratowski S, Hahn S, Guarente L, et al.Five intermediate complexes in transcription initiation by RNA polymerase II[J].Cell, 1989, 56(4):549-561.
[4] van Dyke M W, Roeder R G, Sawadogo M.Physical analysis of transcription preinitiation complex assembly on a class II gene promoter[J].Science, 1988, 241(4871):1335-1338.
[5] Burley S K, Roeder R G.Biochemistry and structural biology of transcription factor IID (TFIID)[J].Annual Review of Biochemistry, 1996, 65(1):769-799.
[6] Dynlacht B D, Hoey T, Tjian R.Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation[J].Cell, 1991, 66(3):563-576.
[7] Haberle V, Stark A.Eukaryotic core promoters and the functional basis of transcription initiation[J].Nature Reviews Molecular Cell Biology, 2018, 19(10):621-637.
[8] Sandelin A, Carninci P, Lenhard B, et al.Mammalian RNA polymerase II core promoters:Insights from genomewide studies[J].Nature Reviews Genetics, 2007, 8(6):424-436.
[9] Donczew R, Hahn S.Mechanistic differences in transcription initiation at TATA-Less and TATA-containing promoters[J].Molecular and Cellular Biology, 2018, 38(1), doi:https://doi.org/10.1128/MCB.00448-17.
[10] Chen X Z, Yin X T, Li J B, et al.Structures of the human mediator and mediator-bound preinitiation complex[J].Science, 2021, 372(6546), doi:10.1126/science.abg-0635.
[11] Wang Q, Guan Z, Qi L, et al.Structural insight into the SAM-mediated assembly of the mitochondrial TOM core complex[J].Science, 2021, 373(6561):1377-1381.
[12] Shen L L, Tang K L, Wang W D, et al.Architecture of the chloroplast PSI-NDH supercomplex in Hordeum vulgare[J].Nature, 2021, doi:10.1038/s41586-021-04277-6.
[13] Cai T, Sun H B, Qiao J, et al.Cell-free chemoenzymatic starch synthesis from carbon dioxide[J].Science, 2021, 373(6562):1523-1527.
[14] Kim D, Yu S, Zheng F, et al.Selective CO2 electrocatalysis at the pseudocapacitive nanoparticle/ordered-ligand interlayer[J].Nature Energy, 2020:1-11.
[15] Wrapp D, Wang N, Corbett K S, et al.Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J].Science, 2020, 367(6483):1260-1263.
[16] Volz E, Mishra I S, Chand M, et al.Assessing transmissibility of SARS-CoV-2 lineage B.1.1.7 in England[J].Nature, 2021, 593(7858):266-269.
[17] Liu Y, Liu J Y, Plante K S, et al.The N501Y spike substitution enhances SARS-CoV-2 infection and transmission[J].Nature, 2021, doi:10.1101/2021.03.08.434499.
[18] Sabino E C, Buss L F, Carvalho M P S, et al.Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence[J].Lancet, 2021, 397(10273):452-455.
[19] Vaidyanathan G.Coronavirus variants are spreading in India-what scientists know so far[J].Nature, 2021, 593(7859):321-322.
[20] Thakur V, Kanta Ratho R.OMICRON (B.1.1.529):A new SARS-CoV-2 Variant of Concern mounting worldwide fear[J].Journal of Medical Virology, 2021, 18137:846-851.
[21] Cao Y L, Su B, Guo X H, et al.Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J].Cell, 2020, 182(1):73-84.
[22] Ju B, Zhang Q, Ge J W, et al.Human neutralizing antibodies elicited by SARS-CoV-2 infection[J].Nature, 2020, 584(7819):115-119.
[23] Shi R, Shan C, Duan X M, et al.A human neutralizing antibody targets the receptor-binding site of SARSCoV-2[J].Nature, 2020, 584(7819):120-124.
[24] Barnes C O, Jette C A, Abernathy M E, et al.SARSCoV-2 neutralizing antibody structures inform therapeutic strategies[J].Nature, 2020, 588(7839):682-687.
[25] Copin R, Baum A, Wloga E, et al.The monoclonal antibody combination REGEN-COV protects against SARSCoV-2 mutational escape in preclinical and human studies[J].Cell, 2021, 184(15):3949-3961.
[26] Gottlieb R L, Nirula A, Chen P, et al.Effect of Bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19:A randomized clinical trial[J].Journal of the American Medical Association, 2021, 325(7):632-644.
[27] Pinto D, Park Y J, Beltramello M, et al.Cross-neutralization of SARS-CoV-2 by a human monoclonal SARSCoV antibody[J].Nature, 2020, 583(7815):290-295.
[28] Esrick E B, Lehmann L E, Biffi A, et al.Post-Transcriptional Genetic Silencing of BCL11A to Treat Sickle Cell Disease[J].The New England JournaL of Medicine, 2021, 384(3):205-215.
[29] Meisel R.CRISPR-cas9 gene editing for sickle cell disease and β-thalassemia[J].The New England Journal of Medicine, 2021, 384(23):e91.
[30] Gillmore J D, Gane E, Taubel J, et al.CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J].The New England JournaL of Medicine, 2021, 385(6):493-502.
[31] Maeder M L, Stefanidakis M, Wilson C J, et al.Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J].Nature Medicine 2019, 25(2):229-233.
[32] Roaanr J, Tam P P L.New insights into early human development:Lessons for stem cell derivation and differentiation[J].Cell Stem Cell, 2017, 20(1):18-28.
[33] Yu L Q, Wei Y L, Duan J L, et al.Blastocyst-like structures generated from human pluripotent stem cells[J].Nature, 2021, 591(7851):620-626.
[34] Liu X D, Tan J P, Schroder J, et al.Modelling human blastocysts by reprogramming fibroblasts into iBlastoids[J].Nature, 2021, 591(7851):627-632.
[35] Martyn I, Kanno T Y, Ruzo A, et al.Author correction:Self-organization of a human organizer by combined Wnt and Nodal signalling[J].Nature, 2018, 564(7735):E10.
[36] Simunovic M, Metzger J J, Etoc F, et al.A 3D model of a human epiblast reveals BMP4-driven symmetry breaking[J].Nature Cell Biology, 2019, 21(7):900-910.
[37] Warmflash A, Sorre B, Etoc F, et al.A method to recapitulate early embryonic spatial patterning in human embryonic stem cells[J].Nature Methods, 2014, 11(8):847-554.
[38] Shao Y, Taniguchi K, Townshend R F, et al.A pluripotent stem cell-based model for post-implantation human amniotic sac development[J].Nature Communications, 2017, 8(1):208.
[39] Zheng Y, Xue X, Shao Y, et al.Controlled modelling of human epiblast and amnion development using stem cells[J].Nature, 2019, 573(7774):421-425.
[40] Xue X F, Sun Y B, Resto-irizarry A M, et al.Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J].Nature Materials, 2018, 17(7):633-641.
[41] Moris N, Anlas K, Van Den Brink S C, et al.An in vitro model of early anteroposterior organization during human development[J].Nature, 2020, 582(7812):410-415.
[42] Li R H, Zhong C Q, Yu Y, et al.Generation of blastocyst-like structures from mouse embryonic and adult cell cultures[J].Cell, 2019, 179(3):687-702.
[43] Kagawa H, Javali A, Khoel H H, et al.Human blastoids model blastocyst development and implantation[J/OL].Nature, 2021, 12.[2021-12-02].https://doi.org/10.1038/s41586-021-04267-8.
[44] Aguilera-castrejon A, Oldak B, Shani T, et al.Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis[J].Nature, 2021, 593(7857):119-124.
[45] Lovell-badgeE R, Anthony E, Barker R A, et al.ISSCR guidelines for stem cell research and clinical translation:The 2021 update[J].Stem Cell Reports, 2021, 16(6):1398-1408.
[46] American Psychiatric Association.Diagnostic and statistical manual of mental disorders[M].5th ed.Arlington:American Psychiatric Pub, 2013.
[47] Huang Y Q, Wang Y, Wang H, et al.Prevalence of mental disorders in China:A cross-sectional epidemiological study[J].The Lancet Psychiatry, 2019, 6(3):211-224.
[48] Kupferschmidt K.Can ecstasy treat the agony of PTSD?[J].Science, 2014, 345(6192):22-23.
[49] Heifets B D, Malenka R C.Disruptive psychopharmacology[J].American Journal of Geriatric Psychiatry, 2019, 76(8):775-756.
[50] Slomski A.MDMA-assisted therapy highly effective for PTSD[J].Journal of the American Medical Association, 2021, 326(4):299.
[51] Halvorsen J, Naudet F, Cristea I A.Challenges with benchmarking of MDMA-assisted psychotherapy[J].Nature Medicine, 2021, 27(10):1689-1690.
[52] Steenkamp M M, Litz B T, Hoge C W, et al.Psychotherapy for military-related PTSD:A review of randomized clinical trials[J].Journal of the American Medical Association, 2015, 314(5):489-500.
[53] Gutner C A, Gallagher M W, Baker A S, et al.Time course of treatment dropout in cognitive-behavioral therapies for posttraumatic stress disorder[J].Psychological Trauma, 2016, 8(1):115-121.
[54] Hake H S, Davis J K P, Wood R R, et al.3,4-methylenedioxymethamphetamine (MDMA) impairs the extinction and reconsolidation of fear memory in rats[J].Physiology and Behavior, 2019, 199:343-350.
[55] Nardou R, Lewis E M, Rothhaas R, et al.Oxytocin-dependent reopening of a social reward learning critical period with MDMA[J].Nature, 2019, 569(7754):116-120.
[56] Mithoefer M C, Feduccia A A, Jerome L, et al.MDMAassisted psychotherapy for treatment of PTSD:Study design and rationale for phase 3 trials based on pooled analysis of six phase 2 randomized controlled trials[J].Psychopharmacology (Berl), 2019, 236(9):2735-2745.
[57] Kaelen M, Barrett F S, Roseman L, et al.LSD enhances the emotional response to music[J].Psychopharmacology (Berl), 2015, 232(19):3607-3614.
[58] CiprianiI A, Furukawa T A, Salanti G, et al.Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder:A systematic review and network meta-analysis[J].Lancet, 2018, 391(10128):1357-1366.
[59] CiprianiI A, Sabtilli C, Furukawa T A, et al.Escitalopram versus other antidepressive agents for depression[J].The Cochrane Database of Systematic Reviews, 2009(2):Cd006532.
[60] Carhart-harris R, GiribaldiI B, Watts R, et al.Trial of psilocybin versus escitalopram for depression[J].The New England Journal of Medicine, 2021, 384(15):1402-1411.
[61] Carhart-harris R L, Kaelen M, Whalley M G, et al.LSD enhances suggestibility in healthy volunteers[J].Psychopharmacology (Berl), 2015, 232(4):785-794.
[62] Sigal Y M, Zhou R, Zhuang X.Visualizing and discovering cellular structures with super-resolution microscopy[J].Science, 2018, 361(6405):880-887.
[63] Gu L S, Li Y Y, Zhang S W, et al.Molecular-scale axial localization by repetitive optical selective exposure[J].Nature Methods, 2021, 18(4):369-373.
[64] Gu L S, Li Y Y, Zhang S W, et al.Molecular resolution imaging by repetitive optical selective exposure[J].Nature Methods, 2019, 16(11):1114-1118.
[65] Ozbay B N, Futia G L, Ma M, et al.Three dimensional two-photon brain imaging in freely moving mice using a miniature fiber coupled microscope with active axialscanning[J].Scientific Reports, 2018, 8(1):8108.
[66] Zong W J, Wu R L, Chen S Y, et al.Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J].Nature Methods, 2021, 18(1):46-49.
[67] Zong W J, Wu R L, Li M L, et al.Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice[J].Nature Methods, 2017, 14(7):713-719.
Outlines

/