[1] Kadic M, Buckmann T, Schittny R, et al.Metamaterials beyond electromagnetism[J].Reports on Progress in Physics, 2013, 76(12):126501.
[2] Wegener M.Metamaterials beyond optics[J].Science, 2013, 342(6161):939-940.
[3] Yu X L, Zhou J, Liang H Y, et al.Mechanical metamaterials associated with stiffness, rigidity and compressibility:A brief review[J].Progress in Materials Science, 2018, 94:114-173.
[4] Grima J N, Caruana-Gauci R, Attard D, et al.Three-dimensional cellular structures with negative Poisson's ratio and negative compressibility properties[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2012, 468:3121-3138.
[5] Bertoldi K, Reis P M, Willshaw S, et al.Negative Poisson's ratio behavior induced by an elastic instability[J].Advanced Materials, 2010, 22(3):361-366.
[6] Babaee S, Shim J, Weaver J C, et al.3D Soft Metamaterials with Negative Poisson's Ratio[J].Advanced Materials, 2013, 25:5044-5049.
[7] Guo X G, Ni X Y, Li J H, et al.Designing mechanical metamaterials with kirigami-inspired, hierarchical constructions for giant positive and negative thermal expansion[J].Advanced Materials, 2021, 33:e2004919.
[8] Ha C S, Hestekin E, Li J H, et al.Controllable thermal expansion of large magnitude in chiral negative Poisson's ratio lattices[J].Physica Status Solidi, 2015, 252:1431-1434.
[9] Zhang Z, Zhang L, Song B, et al.Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials[J].Applied Materials Today, 2021:101268.
[10] Schaedler T A, Jacobsen A J, Torrents A, et al.Ultralight metallic microlattices[J].Science, 2011, 334(6058):962-965.
[11] Korpas L M, Yin R, Yasuda H, et al.Temperature-responsive multistable metamaterials[J].ACS Applied Materials & Interfaces, 2021, 13(26):31163-31170.
[12] Liu F, Jiang X H, Wang X T, et al.Machine learningbased design and optimization of curved beams for multistable structures and metamaterials[J].Extreme Mechanics Letters, 2020, 41(29):101002.
[13] Librandi G, Tubaldi E, Bertoldi K.Programming nonreciprocity and reversibility in multistable mechanical metamaterials[J].Nature Communications, 2021, 12:3454.
[14] Melancon D, Gorissen B, Garcia-Mora C J, et al.Multistable inflatable origami structures at the metre scale[J].Nature, 2021, 592:545-550.
[15] Florijn B, Coulais C, van Hecke M.Programmable mechanical metamaterials[J].Physical Review Letters, 2014, 113(17):175503.
[16] Qing R, Wang X T, Li D C.Multimodal soft jumping robot with self-decision ability[J].Smart Materials & Structures, 2021, 30:085038.
[17] El Helou C, Buskohl P R, Tabor C E, et al.Digital logic gates in soft, conductive mechanical metamaterials[J].Nature Communications, 2021, 12:1633.
[18] Meng Z Q, Chen W T, Mei T, et al.Bistability-based foldable origami mechanical logic gates[J].Extreme Mechanics Letters, 2021, 43:101180.
[19] Cummer S A, Christensen J, Alù A.Controlling sound with acoustic metamaterials[J].Nature Reviews Materials, 2016, 1:16001.
[20] Cummer S A, Schurig D.One path to acoustic cloaking[J].New Journal of Physics, 2007, 9(3):45.
[21] Zhu X F, Liang B, Kan W W, et al.Acoustic cloaking by a superlens with single-negative materials[J].Physical Review Letters, 2011, 106(1):014301.
[22] Munteanu L, Chiroiu V.On three-dimensional spherical acoustic cloaking[J].New Journal of Physics, 2011, 13(8):083031.
[23] Kaina N, Lemoult F, Fink M, et al.Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials[J].Nature, 2015, 525:77-81.
[24] Wu L L, Wang Y, Zhai Z R, et al.Mechanical metamaterials for full-band mechanical wave shielding[J].Applied Materials Today, 2020, 20:100671.
[25] Lakes R, Wojciechowski K W.Negative compressibility, negative Poisson's ratio, and stability[J].Physica Status Solidi (B):Basic Solid State Physics, 2008, 245(3):545-551.
[26] Gatt R, Grima J N.Negative compressibility[J].Physica Status Solidi (RRL):Rapid Research Letters, 2008, 2(5):236-238.
[27] Ai L, Gao X L.Metamaterials with negative Poisson's ratio and non-positive thermal expansion[J].Composite Structures, 2017, 162(suppl 1):70-84.
[28] Wang T, An J H, He H, et al.A novel 3D impact energy absorption structure with negative Poisson's ratio and its application in aircraft crashworthiness[J].Composite Structures, 2021, 262(3), 113663.
[29] Wan M Q, Yu K Q, Sun H Y.4D printed programmable auxetic metamaterials with shape memory effects[J].Composite Structures, 2022, 279:114791.
[30] Liu S W, Peng G L, Jin K.Design and characteristics of a novel QZS vibration isolation system with origami-inspired corrector[J].Nonlinear Dynamics, 2021, 106:255-277.
[31] Chen J X, Xu W T, Wei Z Y, et al.Stiffness characteristics for a series of lightweight mechanical metamaterials with programmable thermal expansion[J].International Journal of Mechanical Sciences, 2021, 202/203:106527.
[32] Wu J, Yao S L, Zhang H, et al.Liquid crystal elastomer metamaterials with giant biaxial rhermal shrinkage for enhancing skin regeneration[J].Advanced Materials, 2021, 33:e2106175.
[33] Anvar V, Alexey Z, Artem T.Study of application of vibration isolators with quasi-zero stiffness for reducing dynamics loads on the foundation[J].Procedia Engineering, 2017, 176:137-143.
[34] Silverberg J L, Evans A A, McLeod L, et al.Using origami design principles to fold reprogrammable mechanical metamaterials[J].Science, 2014, 345(6197):647-650.
[35] Coulais C, Teomy E, de Reus K, et al.Combinatorial design of textured mechanical metamaterials[J].Nature, 2016, 535:529-532.
[36] Lee T U, Chen Y, Heitzmann M T, et al.Compliant curved-crease origami-inspired metamaterials with a programmable force-displacement response[J].Materials & Design, 2021, 207:109859.
[37] Li Y B, Yin J.Metamorphosis of three-dimensional kirigami-inspired reconfigurable and reprogrammable architected matter[J].Materials Today Physics, 2021, 21(6):100511.
[38] Chen T, Pauly M, Reis P M.A reprogrammable mechanical metamaterial with stable memory[J].Nature, 2021, 589:386-390.
[39] Liu W, Jiang H, Chen Y.3D Programmable metamaterials based on reconfigurable mechanism modules[J/OL].Advanced Functional Materials, 2021, doi:10.1002/adfm.202109865.
[40] Yasuda H, Buskohl P R, Gillman A, et al.Mechanical computing[J].Nature, 2021, 598:39-48.
[41] Ren Z W, Ji L T, Tao R, et al.SMP-based multi-stable mechanical metamaterials:From bandgap tuning to wave logic gates[J].Extreme Mechanics Letters, 2021, 42:101077.
[42] Song Y P, Panas R M, Chizari S, et al.Additively manufacturable micro-mechanical logic gates[J].Nature Communications, 2019, 10:882.
[43] Wu L L, Liu L, Wang Y, et al.A machine learningbased method to design modular metamaterials[J].Extreme Mechanics Letters, 2020, 36:100657.
[44] Garland A P, White B C, Jensen S C, et al.Pragmatic generative optimization of novel structural lattice metamaterials with machine learning[J].Materials & Design, 2021, 203:109632.
[45] Wang L, Liu H T.Parameter optimization of bidirectional re-entrant auxetic honeycomb metamaterial based on genetic algorithm[J].Composite Structures, 2021, 267:113915.
[46] Fan J, Zhang L, Lei S W, et al.A review of additive manufacturing of metamaterials and developing trends[J].Materials Today, 2021, 50:303-328.
[47] Zhang K Q, Wang K Y, Chen J X, et al.Design and additive manufacturing of 3D-architected ceramic metamaterials with programmable thermal expansion[J].Additive Manufacturing, 2021, 47:102338.
[48] Lee H, Jang Y, Choe J K, et al.3D-printed programmable tensegrity for soft robotics[J].Science Robotics, 2020, 5(45):eaay9024.
[49] Wang Y, Li L, Hofmann D, et al.Structured fabrics with tunable mechanical properties[J].Nature, 2021, 596:238-243.