[1] Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098):1107-1111.
[2] Gillings M R, Gaze W H, Pruden A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. The ISME Journal, 2015, 9(6):1269-1279.
[3] Tiedje J M, Wang F, Manaia C M, et al. Antibiotic resistance genes in the human-impacted environment:A one health perspective[J]. Pedosphere, 2019, 29(3):273-282.
[4] Cytryn E. The soil resistome:The anthropogenic, the native, and the unknown[J]. Soil Biology & Biochemistry, 2013, 63:18-23.
[5] D′Costa V M, McGrann K M, Hughes D W, et al. Sampling the antibiotic resistome[J]. Science, 2006, 311:374-377.
[6] Hu H W, Wang J T, Singh B K, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes[J]. Environmental Microbiology, 2019, 20(9):3186-3200.
[7] Allen H K, Moe L A, Rodbumre J, et al. Functional metagenomics reveals diverseβ-lactamases in a remote Alaskan soil[J]. The ISME Journal, 2009, 3:243-251.
[8] D′Costa V, King C, Kalan L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477:457-461.
[9] McCann C M, Christgen B, Roberts J A, et al. Understanding drivers of antibiotic resistance genes in high arctic soil ecosystems[J]. Environment International, 2019, 125:497-504.
[10] 张毓森,叶军,苏建强.农田生态系统抗生素抗性研究进展与挑战[J].浙江大学学报(农业与生命科学版), 2017, 43(6):691-699.
[11] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9):3435-3440.
[12] Christou A, Agüera A, Bayona J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment:The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes:A review[J]. Water Research, 2017, 123:448-467.
[13] 安新丽,苏建强.活性污泥抗生素抗性基因研究进展[J].微生物学通报, 2019, 46(8):2069-2079.
[14] An X L, Su J Q, Li B, et al. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR[J]. Environment International, 2018, 117:146-153.
[15] Thebo A L, Drechsel P, Lambin E F, et al. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows[J]. Environmental Research Letters, 2017, 12:074008.
[16] Wang F H, Qiao M, Lv Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. Environmental Pollution, 2014, 184:247-253.
[17] Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. Environmental Science & Technology, 2014, 48(16):9079-9085.
[18] Ahmed W, Zhang Q, Lobos A, et al. Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters[J]. Environment International, 2018, 116:308-318.
[19] Zhu G B, Wang X M, Yang T, et al. Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15:270-281.
[20] Ding L J, Zhou X Y, Zhu Y G. Microbiome and antibiotic resistome in household dust from Beijing, China[J]. Environment International, 2020, 139:105702.
[21] Wang L J, Wang J H, Wang J, et al. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application[J]. Journal of Hazardous Materials, 2020, 392:122334.
[22] Wang F, Xu M, Stedtfeld R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental Science & Technology, 2018, 52(22):13037-13046.
[23] Pu Q, Zhao L X, Li Y T, et al. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China[J]. Journal of Hazardous Materials, 2020, 391:122267.
[24] 张毓森,叶军,苏建强.粪肥与铜一次性施用对农田土壤抗生素抗性基因的长期影响[J].应用与环境生物学报, 2019, 25(2):328-332.
[25] Fahrenfeld N, Ma Y J, O′Brien M, et al. Reclaimed water as a reservoir of antibiotic resistance genes:Distribution system and irrigation implications[J]. Frontiers in Microbiology, 2013, 4:130.
[26] Lu J, Zhang Y X, Wu J, et al. Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process[J]. Journal of Hazardous Materials, 2020, 382(15):121025.
[27] Hu J L, Zhao F Z, Zhang X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615:1332-1340.
[28] Li J, Cao J J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19):10975-10984.
[29] Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998.
[30] Cheng W, Li J, Wu Y, et al. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system:A case study[J]. Journal of Hazardous Materials, 2016, 304:18-25.
[31] McKinney C W, Loftin K A, Meyer M T, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence[J]. Environmental Science & Technology, 2010, 44(16):6102-6109.
[32] Larsson D G J, Flach C F. Antibiotic resistance in the environment[J]. Nature Review Microbiology, 2021, 4:1-13.
[33] Pal C, Asiani K, Arya S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313.
[34] Yin Y, Gu J, Wang X, et al. Effects of copper addition on copper resistance, antibiotic resistance genes, and intl1 during swine manure composting[J]. Frontiers in Microbiology, 2017, 8:344.
[35] Hu H W, Wang J T, Li J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11):3896-3909.
[36] Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2016, 51(2):790-800.
[37] Bank M S, Ok Y S, Swarzenski P W. Microplastic′s role in antibiotic resistance[J]. Science, 2020, 369(6509):1315.
[38] Pham D N, Clark L, Li M Y. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge[J]. Journal of Hazardous Materials Letters, 2021, 2:100014.
[39] Chen Q L, Zhu D, An X L, et al. Does nano silver promote the selection of antibiotic resistance genes in soil and plant[J]. Environment International, 2019, 128:399-406.
[40] Campos J, Mour ão J, Pestana N, et al. Microbiological quality of ready-to-eat salads:An underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes[J]. International Journal of Food Microbiology, 2013, 166(3):464-470.
[41] Zhu B K, Chen Q L, Chen S C, et al. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced[J]. Environment International, 2017, 98:152-159.
[42] Holvoet K, Sampers I, Callens B, et al. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil[J]. Applied and Environmental Microbiology, 2013, 79(21):6677-6683.
[43] Wang F H, Qiao M, Chen Z, et al. Antibiotic resistance genes in manure-amended soil and vegetables at harvest[J]. Journal of Hazardous Materials, 2015, 299:215-221.
[44] Chen Q L, An X L, Zheng B X, et al. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize[J]. Science of the Total Environment, 2018, 645:1230-1237.
[45] Marti R, Tien Y C, Murray R, et al. Safely coupling livestock and crop production systems:How rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure[J]. Applied and Environmental Microbiology, 2014, 80:3258-3265.
[46] Wang F, Fu Y H, Sheng H J, et al. Antibiotic resistance in the soil ecosystem:A One Health perspective[J]. Current Opinion in Environmental Science & Health, 2021, 20:100230.
[47] Watts J E M, Schreier H J, Lanska L, et al. The rising tide of antimicrobial resistance in aquaculture:Sources, sinks and solutions[J]. Marine Drugs, 2017, 15(6):158.
[48] Marti E, Variatza E, Luis Balcazar J. The role of aquatic ecosystems as reservoirs of antibiotic resistance[J]. Trends in Microbiology, 2014, 22(1):36-41.
[49] Zhu Y G, Zhao Y, Zhu D, et al. Soil biota, antimicrobial resistance and planetary health[J]. Environment International, 2019, 131:105059.
[50] 朱冬,陈青林,丁晶,等.土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J].中国科学:生命科学, 2019, 49(12):1652-1663.
[51] Liu Y Q, Sun Z J, Wang C, et al. Purification of a novel antibacterial short peptide in earthworm Eisenia foetida[J]. Acta Biochimica et Biophysica Sinica, 2004, 36(4):297-302.
[52] Li W L, Li S S, Zhong J, et al. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen)[J]. Peptides, 2011, 32(6):1146-1150.
[53] Zhu D, An X L, Chen Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology, 2018, 52(5):3081-3090.
[54] Zhu D, Zheng F, Chen Q L, et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut[J]. Environmental Science & Technology, 2018, 52:12748-12756.
[55] Lerminiaux N A, Cameron A D S. Horizontal transfer of antibiotic resistance genes in clinical environments[J]. Canada Journal of Microbiology, 2019, 65(1):34-44.
[56] Fan X T, Li H, Chen Q L, et al. Fate of antibiotic resistant Pseudomonas Putida and broad host range plasmid in natural soil microcosms[J]. Frontiers in Microbiology, 2019, 10(194):194.
[57] Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community[J]. Environmental Pollution, 2021, 268:115903.
[58] Pu Q, Fan X T, Sun A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes[J]. Environment International, 2021, 152:106453.
[59] Johnston C, Martin B, Fichant G, et al. Bacterial transformation:Distribution, shared mechanisms and divergent control[J]. Nature Reviews Microbiology, 2014, 12:181-196.
[60] Chen I, Dubnau D. DNA uptake during bacterial transformation[J]. Nature Reviews Microbiology, 2004, 2:241-249.
[61] Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria[J]. FEMS Microbiology Reviews, 2013, 37(3):336-363.
[62] Wang Y, Lu J, Engelst ädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. The ISME Journal, 2020, 14(8):2179-2196.
[63] Traglia G M, Quinn B, Schramm S T, et al. Serum albumin and Ca2+are natural competence inducers in the human pathogen Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(8):4920-4929.
[64] Balsalobre L, Ferr ándiz M J, Li ñares J, et al. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(7):2072-2081.
[65] McInnes R S, McCallum G E, Lamberte L E, et al. Horizontal transfer of antibiotic resistance genes in the human gut microbiome[J]. Current Opinion in Microbiology, 2020, 53:35-43.
[66] Lekunberri I, Subirats J, Borrego C M, et al. Exploring the contribution of bacteriophages to antibiotic resistance[J]. Environmental Pollution, 2017, 220:981-984.
[67] Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction[J]. Applied and Environmental Microbiology, 2015, 81(22):7905-7913.
[68] 陈莫莲,安新丽,杨凯,等.土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展[J].应用生态学报, 2021, 32(6):2267-2274.
[69] Larra ñaga O, Brown-Jaque M, Quir ós P, et al. Phage particles harboring antibiotic resistance genes in freshcut vegetables and agricultural soil[J]. Environment International, 2018, 115:133-141.
[70] Rumbo C, Fern á ndez-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles:A new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2011, 55:3084-3090.
[71] Yaron S, Kolling G L, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria[J]. Applied and Environmental Microbiology, 2000, 66(10):4414-4420.