Exclusive: Soil Ecology

The soil resistome: Origin,dissemination and driving factor

  • AN Xinli ,
  • SU Jianqiang
Expand
  • Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China

Received date: 2021-06-28

  Revised date: 2021-12-20

  Online published: 2022-03-25

Abstract

Soil is a heterogeneous habitat and serves as the major reservoir and sink of antibiotic resistance.In this review,we summarize the sources and driving factors in shaping soil resistome,and the mechanisms underlying the transfer of antibiotic resistance genes (ARGs) amongst soil bacteria.We also present current knowledge on dissemination of ARG among soil,water,plant and soil fauna,and propose the future perspectives in this filed.This review will help illustrate mechanisms underpinning the dissemination of ARGs in soil.

Cite this article

AN Xinli , SU Jianqiang . The soil resistome: Origin,dissemination and driving factor[J]. Science & Technology Review, 2022 , 40(3) : 64 -74 . DOI: 10.3981/j.issn.1000-7857.2022.03.006

References

[1] Forsberg K J, Reyes A, Wang B, et al. The shared antibiotic resistome of soil bacteria and human pathogens[J]. Science, 2012, 337(6098):1107-1111.
[2] Gillings M R, Gaze W H, Pruden A, et al. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution[J]. The ISME Journal, 2015, 9(6):1269-1279.
[3] Tiedje J M, Wang F, Manaia C M, et al. Antibiotic resistance genes in the human-impacted environment:A one health perspective[J]. Pedosphere, 2019, 29(3):273-282.
[4] Cytryn E. The soil resistome:The anthropogenic, the native, and the unknown[J]. Soil Biology & Biochemistry, 2013, 63:18-23.
[5] D′Costa V M, McGrann K M, Hughes D W, et al. Sampling the antibiotic resistome[J]. Science, 2006, 311:374-377.
[6] Hu H W, Wang J T, Singh B K, et al. Diversity of herbaceous plants and bacterial communities regulates soil resistome across forest biomes[J]. Environmental Microbiology, 2019, 20(9):3186-3200.
[7] Allen H K, Moe L A, Rodbumre J, et al. Functional metagenomics reveals diverseβ-lactamases in a remote Alaskan soil[J]. The ISME Journal, 2009, 3:243-251.
[8] D′Costa V, King C, Kalan L, et al. Antibiotic resistance is ancient[J]. Nature, 2011, 477:457-461.
[9] McCann C M, Christgen B, Roberts J A, et al. Understanding drivers of antibiotic resistance genes in high arctic soil ecosystems[J]. Environment International, 2019, 125:497-504.
[10] 张毓森,叶军,苏建强.农田生态系统抗生素抗性研究进展与挑战[J].浙江大学学报(农业与生命科学版), 2017, 43(6):691-699.
[11] Zhu Y G, Johnson T A, Su J Q, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms[J]. Proceedings of the National Academy of Sciences, 2013, 110(9):3435-3440.
[12] Christou A, Agüera A, Bayona J M, et al. The potential implications of reclaimed wastewater reuse for irrigation on the agricultural environment:The knowns and unknowns of the fate of antibiotics and antibiotic resistant bacteria and resistance genes:A review[J]. Water Research, 2017, 123:448-467.
[13] 安新丽,苏建强.活性污泥抗生素抗性基因研究进展[J].微生物学通报, 2019, 46(8):2069-2079.
[14] An X L, Su J Q, Li B, et al. Tracking antibiotic resistome during wastewater treatment using high throughput quantitative PCR[J]. Environment International, 2018, 117:146-153.
[15] Thebo A L, Drechsel P, Lambin E F, et al. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows[J]. Environmental Research Letters, 2017, 12:074008.
[16] Wang F H, Qiao M, Lv Z E, et al. Impact of reclaimed water irrigation on antibiotic resistance in public parks, Beijing, China[J]. Environmental Pollution, 2014, 184:247-253.
[17] Wang F H, Qiao M, Su J Q, et al. High throughput profiling of antibiotic resistance genes in urban park soils with reclaimed water irrigation[J]. Environmental Science & Technology, 2014, 48(16):9079-9085.
[18] Ahmed W, Zhang Q, Lobos A, et al. Precipitation influences pathogenic bacteria and antibiotic resistance gene abundance in storm drain outfalls in coastal sub-tropical waters[J]. Environment International, 2018, 116:308-318.
[19] Zhu G B, Wang X M, Yang T, et al. Air pollution could drive global dissemination of antibiotic resistance genes[J]. The ISME Journal, 2021, 15:270-281.
[20] Ding L J, Zhou X Y, Zhu Y G. Microbiome and antibiotic resistome in household dust from Beijing, China[J]. Environment International, 2020, 139:105702.
[21] Wang L J, Wang J H, Wang J, et al. Soil types influence the characteristic of antibiotic resistance genes in greenhouse soil with long-term manure application[J]. Journal of Hazardous Materials, 2020, 392:122334.
[22] Wang F, Xu M, Stedtfeld R D, et al. Long-term effect of different fertilization and cropping systems on the soil antibiotic resistome[J]. Environmental Science & Technology, 2018, 52(22):13037-13046.
[23] Pu Q, Zhao L X, Li Y T, et al. Manure fertilization increase antibiotic resistance in soils from typical greenhouse vegetable production bases, China[J]. Journal of Hazardous Materials, 2020, 391:122267.
[24] 张毓森,叶军,苏建强.粪肥与铜一次性施用对农田土壤抗生素抗性基因的长期影响[J].应用与环境生物学报, 2019, 25(2):328-332.
[25] Fahrenfeld N, Ma Y J, O′Brien M, et al. Reclaimed water as a reservoir of antibiotic resistance genes:Distribution system and irrigation implications[J]. Frontiers in Microbiology, 2013, 4:130.
[26] Lu J, Zhang Y X, Wu J, et al. Fate of antibiotic resistance genes in reclaimed water reuse system with integrated membrane process[J]. Journal of Hazardous Materials, 2020, 382(15):121025.
[27] Hu J L, Zhao F Z, Zhang X X, et al. Metagenomic profiling of ARGs in airborne particulate matters during a severe smog event[J]. Science of the Total Environment, 2018, 615:1332-1340.
[28] Li J, Cao J J, Zhu Y G, et al. Global survey of antibiotic resistance genes in air[J]. Environmental Science & Technology, 2018, 52(19):10975-10984.
[29] Hu X, Zhou Q, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China[J]. Environmental Pollution, 2010, 158(9):2992-2998.
[30] Cheng W, Li J, Wu Y, et al. Behavior of antibiotics and antibiotic resistance genes in eco-agricultural system:A case study[J]. Journal of Hazardous Materials, 2016, 304:18-25.
[31] McKinney C W, Loftin K A, Meyer M T, et al. Tet and sul antibiotic resistance genes in livestock lagoons of various operation type, configuration, and antibiotic occurrence[J]. Environmental Science & Technology, 2010, 44(16):6102-6109.
[32] Larsson D G J, Flach C F. Antibiotic resistance in the environment[J]. Nature Review Microbiology, 2021, 4:1-13.
[33] Pal C, Asiani K, Arya S, et al. Metal resistance and its association with antibiotic resistance[J]. Advances in Microbial Physiology, 2017, 70:261-313.
[34] Yin Y, Gu J, Wang X, et al. Effects of copper addition on copper resistance, antibiotic resistance genes, and intl1 during swine manure composting[J]. Frontiers in Microbiology, 2017, 8:344.
[35] Hu H W, Wang J T, Li J, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils[J]. Environmental Microbiology, 2016, 18(11):3896-3909.
[36] Hu H W, Wang J T, Li J, et al. Long-term nickel contamination increases the occurrence of antibiotic resistance genes in agricultural soils[J]. Environmental Science & Technology, 2016, 51(2):790-800.
[37] Bank M S, Ok Y S, Swarzenski P W. Microplastic′s role in antibiotic resistance[J]. Science, 2020, 369(6509):1315.
[38] Pham D N, Clark L, Li M Y. Microplastics as hubs enriching antibiotic-resistant bacteria and pathogens in municipal activated sludge[J]. Journal of Hazardous Materials Letters, 2021, 2:100014.
[39] Chen Q L, Zhu D, An X L, et al. Does nano silver promote the selection of antibiotic resistance genes in soil and plant[J]. Environment International, 2019, 128:399-406.
[40] Campos J, Mour ão J, Pestana N, et al. Microbiological quality of ready-to-eat salads:An underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes[J]. International Journal of Food Microbiology, 2013, 166(3):464-470.
[41] Zhu B K, Chen Q L, Chen S C, et al. Does organically produced lettuce harbor higher abundance of antibiotic resistance genes than conventionally produced[J]. Environment International, 2017, 98:152-159.
[42] Holvoet K, Sampers I, Callens B, et al. Moderate prevalence of antimicrobial resistance in Escherichia coli isolates from lettuce, irrigation water, and soil[J]. Applied and Environmental Microbiology, 2013, 79(21):6677-6683.
[43] Wang F H, Qiao M, Chen Z, et al. Antibiotic resistance genes in manure-amended soil and vegetables at harvest[J]. Journal of Hazardous Materials, 2015, 299:215-221.
[44] Chen Q L, An X L, Zheng B X, et al. Long-term organic fertilization increased antibiotic resistome in phyllosphere of maize[J]. Science of the Total Environment, 2018, 645:1230-1237.
[45] Marti R, Tien Y C, Murray R, et al. Safely coupling livestock and crop production systems:How rapidly do antibiotic resistance genes dissipate in soil following a commercial application of swine or dairy manure[J]. Applied and Environmental Microbiology, 2014, 80:3258-3265.
[46] Wang F, Fu Y H, Sheng H J, et al. Antibiotic resistance in the soil ecosystem:A One Health perspective[J]. Current Opinion in Environmental Science & Health, 2021, 20:100230.
[47] Watts J E M, Schreier H J, Lanska L, et al. The rising tide of antimicrobial resistance in aquaculture:Sources, sinks and solutions[J]. Marine Drugs, 2017, 15(6):158.
[48] Marti E, Variatza E, Luis Balcazar J. The role of aquatic ecosystems as reservoirs of antibiotic resistance[J]. Trends in Microbiology, 2014, 22(1):36-41.
[49] Zhu Y G, Zhao Y, Zhu D, et al. Soil biota, antimicrobial resistance and planetary health[J]. Environment International, 2019, 131:105059.
[50] 朱冬,陈青林,丁晶,等.土壤生态系统中抗生素抗性基因与星球健康:进展与展望[J].中国科学:生命科学, 2019, 49(12):1652-1663.
[51] Liu Y Q, Sun Z J, Wang C, et al. Purification of a novel antibacterial short peptide in earthworm Eisenia foetida[J]. Acta Biochimica et Biophysica Sinica, 2004, 36(4):297-302.
[52] Li W L, Li S S, Zhong J, et al. A novel antimicrobial peptide from skin secretions of the earthworm, Pheretima guillelmi (Michaelsen)[J]. Peptides, 2011, 32(6):1146-1150.
[53] Zhu D, An X L, Chen Q L, et al. Antibiotics disturb the microbiome and increase the incidence of resistance genes in the gut of a common soil collembolan[J]. Environmental Science & Technology, 2018, 52(5):3081-3090.
[54] Zhu D, Zheng F, Chen Q L, et al. Exposure of a soil collembolan to Ag nanoparticles and AgNO3 disturbs its associated microbiota and lowers the incidence of antibiotic resistance genes in the gut[J]. Environmental Science & Technology, 2018, 52:12748-12756.
[55] Lerminiaux N A, Cameron A D S. Horizontal transfer of antibiotic resistance genes in clinical environments[J]. Canada Journal of Microbiology, 2019, 65(1):34-44.
[56] Fan X T, Li H, Chen Q L, et al. Fate of antibiotic resistant Pseudomonas Putida and broad host range plasmid in natural soil microcosms[J]. Frontiers in Microbiology, 2019, 10(194):194.
[57] Pu Q, Fan X T, Li H, et al. Cadmium enhances conjugative plasmid transfer to a fresh water microbial community[J]. Environmental Pollution, 2021, 268:115903.
[58] Pu Q, Fan X T, Sun A Q, et al. Co-effect of cadmium and iron oxide nanoparticles on plasmid-mediated conjugative transfer of antibiotic resistance genes[J]. Environment International, 2021, 152:106453.
[59] Johnston C, Martin B, Fichant G, et al. Bacterial transformation:Distribution, shared mechanisms and divergent control[J]. Nature Reviews Microbiology, 2014, 12:181-196.
[60] Chen I, Dubnau D. DNA uptake during bacterial transformation[J]. Nature Reviews Microbiology, 2004, 2:241-249.
[61] Seitz P, Blokesch M. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria[J]. FEMS Microbiology Reviews, 2013, 37(3):336-363.
[62] Wang Y, Lu J, Engelst ädter J, et al. Non-antibiotic pharmaceuticals enhance the transmission of exogenous antibiotic resistance genes through bacterial transformation[J]. The ISME Journal, 2020, 14(8):2179-2196.
[63] Traglia G M, Quinn B, Schramm S T, et al. Serum albumin and Ca2+are natural competence inducers in the human pathogen Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(8):4920-4929.
[64] Balsalobre L, Ferr ándiz M J, Li ñares J, et al. Viridans group streptococci are donors in horizontal transfer of topoisomerase IV genes to Streptococcus pneumoniae[J]. Antimicrobial Agents and Chemotherapy, 2003, 47(7):2072-2081.
[65] McInnes R S, McCallum G E, Lamberte L E, et al. Horizontal transfer of antibiotic resistance genes in the human gut microbiome[J]. Current Opinion in Microbiology, 2020, 53:35-43.
[66] Lekunberri I, Subirats J, Borrego C M, et al. Exploring the contribution of bacteriophages to antibiotic resistance[J]. Environmental Pollution, 2017, 220:981-984.
[67] Ross J, Topp E. Abundance of antibiotic resistance genes in bacteriophage following soil fertilization with dairy manure or municipal biosolids, and evidence for potential transduction[J]. Applied and Environmental Microbiology, 2015, 81(22):7905-7913.
[68] 陈莫莲,安新丽,杨凯,等.土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展[J].应用生态学报, 2021, 32(6):2267-2274.
[69] Larra ñaga O, Brown-Jaque M, Quir ós P, et al. Phage particles harboring antibiotic resistance genes in freshcut vegetables and agricultural soil[J]. Environment International, 2018, 115:133-141.
[70] Rumbo C, Fern á ndez-Moreira E, Merino M, et al. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles:A new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii[J]. Antimicrobial Agents and Chemotherapy, 2011, 55:3084-3090.
[71] Yaron S, Kolling G L, Simon L, et al. Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria[J]. Applied and Environmental Microbiology, 2000, 66(10):4414-4420.
Outlines

/