[1] Borneman J, Skroch P W, O'Sullivan K M, et al. Molecular microbial diversity of an agricultural soil in Wisconsin[J]. Applied and Environmental Microbiology, 1996, 62(6):1935-1943.
[2] Trevors J T. Bacterial biodiversity in soil with an emphasis on chemically-contaminated soils[J]. Water, Air, and Soil Pollution, 1998, 101(1):45-67.
[3] 魏子艳,金德才,邓晔.环境微生物宏基因组学研究中的生物信息学方法[J].微生物学通报, 2015, 42(5):890-901.
[4] Handelsman J, Rondon M R, Brady S F, et al. Molecular biological access to the chemistry of unknown soil microbes:A new frontier for natural products[J]. Chemistry & Biology, 1998, 5(10):R245-R249.
[5] Mardis E R. Next-generation DNA sequencing methods[J]. Annual Review of Genomics and Human Genetics, 2008, 9:387-402.
[6] Eid J, Fehr A, Gray J, et al. Real-time DNA sequencing from single polymerase molecules[J]. Science, 2009, 323(5910):133-138.
[7] Niedringhaus T P, Milanova D, Kerby M B, et al. Landscape of next-generation sequencing technologies[J]. Analytical Chemistry, 2011, 83(12):4327-4341.
[8] Tremblay J, Yergeau E. Systematic processing of ribosomal RNA gene amplicon sequencing data[J]. GigaScience, 2019, 8(12):giz146.
[9] Zhou J, Wu L, Deng Y, et al. Reproducibility and quantitation of amplicon sequencing-based detection[J]. The ISME Journal, 2011, 5(8):1303-1313.
[10] Liu Y X, Qin Y, Chen T, et al. A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein Cell, 2020, 12:315-330.
[11] Magoc T, Salzberg S L. FLASH:Fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21):2957-2963.
[12] Edgar R C. UPARSE:Highly accurate OTU sequences from microbial amplicon reads[J]. Nature Methods, 2013, 10:996-998.
[13] Callahan B J, McMurdie P J, Rosen M J, et al. DADA2:High-resolution sample inference from Illumina amplicon data[J]. Nature Methods, 2016, 13:581-583.
[14] Edgar R C. UNOISE2:Improved error-correction for Illumina 16S and ITS amplicon sequencing[J]. BioRxiv, 2016, doi:10.1101/081257.
[15] Amir A, McDonald D, Navas-Molina J A, et al. Deblur rapidly resolves single-nucleotide community sequence patterns[J]. mSystems, 2017, 2(2):e00191-16.
[16] Milanese A, Mende D R, Paoli L, et al. Microbial abundance, activity and population genomic profiling with mOTUs2[J]. Nature Communications, 2019, 10:1014.
[17] Ewels P, Magnusson M, Lundin S, et al. MultiQC:Summarize analysis results for multiple tools and samples in a single report[J]. Bioinformatics, 2016, 32(19):3047-3048.
[18] Chen S, Zhou Y, Chen Y, et al. fastp:An ultra-fast allin-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17):i884-i890.
[19] Bolger A M, Lohse M, Usadel B. Trimmomatic:A flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15):2114-2120.
[20] De Coster W, D'Hert S, Schultz D T, et al. Nanopack:Visualizing and processing long-read sequencing data[J]. Bioinformatics, 2018, 34(15):2666-2669.
[21] Li D, Liu C M, Luo R, et al. MEGAHIT:An ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph[J]. Bioinformatics, 2015, 31(10):1674-1676.
[22] Li D, Luo R, Liu C M, et al. MEGAHIT v1.0:A fast and scalable metagenome assembler driven by advanced methodologies and community practices[J]. Methods, 2016, 102:3-11.
[23] Bankevich A, Nurk S, Antipov D, et al. SPAdes:A new genome assembly algorithm and its applications to single-cell sequencing[J]. Journal of Computational Biology, 2012, 19(5):455-477.
[24] Nurk S, Meleshko D, Korobeynikov A, et al. metaSPAdes:A new versatile metagenomic assembler[J]. Genome Research, 2017, 27(5):824-834.
[25] Peng Y, Leung H C, Yiu S M, et al. IDBA-UD:A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth[J]. Bioinformatics, 2012, 28(11):1420-1428.
[26] Luo R, Liu B, Xie Y, et al. SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2012, 1(1):2047-217X-1-18.
[27] Luo R, Liu B, Xie Y, et al. Erratum:SOAPdenovo2:An empirically improved memory-efficient short-read de novo assembler[J]. GigaScience, 2015, 4(1):s13742-015-0069-2.
[28] Koren S, Walenz B P, Berlin K, et al. Canu:Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation[J]. Genome Research, 2017, 27(5):722-736.
[29] Bertrand D, Shaw J, Kalathiyappan M, et al. Hybrid metagenomic assembly enables high-resolution analysis of resistance determinants and mobile elements in human microbiomes[J]. Nature Biotechnology, 2019, 37(8):937-944.
[30] Kolmogorov M, Bickhart D M, Behsaz B, et al. metaFlye:Scalable long-read metagenome assembly using repeat graphs[J]. Nature Methods, 2020, 17(11):1103-1110.
[31] Kang D D, Li F, Kirton E, et al. MetaBAT 2:An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies[J]. PeerJ, 2019, 7:e7359.
[32] Wu Y W, Tang Y H, Tringe S G, et al. MaxBin:An automated binning method to recover individual genomes from metagenomes using an expectation-maximization algorithm[J]. Microbiome, 2014, 2:26.
[33] Wu Y W, Simmons B A, Singer S W. MaxBin 2.0:An automated binning algorithm to recover genomes from multiple metagenomic datasets[J]. Bioinformatics, 2016, 32(4):605-607.
[34] Alneberg J, Bjarnason B S, de Bruijn I, et al. Binning metagenomic contigs by coverage and composition[J]. Nature Methods, 2014, 11(11):1144-1146.
[35] Nissen J N, Johansen J, Allesøe R L, et al. Improved metagenome binning and assembly using deep variational autoencoders[J]. Nature Biotechnology, 2021, 39(5):555-560.
[36] Uritskiy G V, DiRuggiero J, Taylor J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis[J]. Microbiome, 2018, 6(1):158.
[37] Buchfink B, Reuter K, Drost H G. Sensitive protein alignments at tree-of-life scale using diamond[J]. Nature Methods, 2021, 18(4):366-368.
[38] Wood D E, Lu J, Langmead B. Improved metagenomic analysis with Kraken 2[J]. Genome Biology, 2019, 20:257.
[39] Menzel P, Ng K L, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju[J]. Nature Communications, 2016, 7:11257.
[40] Beghini F, McIver L J, Blanco-Miguez A, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3[J]. eLife, 2021, 10:e65088.
[41] Hyatt D, LoCascio P F, Hauser L J, et al. Gene and translation initiation site prediction in metagenomic sequences[J]. Bioinformatics, 2012, 28(17):2223-2230.
[42] Hamilton A J. Species diversity or biodiversity?[J]. Journal of Environmental Management, 2005, 75(1):89-92.
[43] Naeem S, Duffy J E, Zavaleta E. The functions of biological diversity in an age of extinction[J]. Science, 2012, 336(6087):1401-1406.
[44] Whittaker R H. Vegetation of the Siskiyou Mountains, Oregon and California[J]. Ecological Monographs, 1960, 30:279-338.
[45] Whittaker R J, Willis K J, Field R. Scale and species richness:Towards a general, hierarchical theory of species diversity[J]. Journal of Biogeography, 2001, 28(4):453-470.
[46] Sanders H L. Marine benthic diversity:A comparative study[J]. The American Naturalist, 1968, 102(925):243-282.
[47] McMurdie P J, Holmes S. Waste not, want not:Why rarefying microbiome data is inadmissible[J]. PLoS Computational Biology, 2014, 10(4):e1003531.
[48] Chao A. Nonparametric estimation of the number of classes in a population[J]. Scandinavian Journal of Statistics, 1984, 11(4):265-270.
[49] Shannon C E. A mathematical theory of communication[M]. New York:Bell System Technical Journal.
[50] Spellerberg I F, Fedor P J. A tribute to Claude Shannon (1916-2001) and a plea for more rigorous use of species richness, species diversity and the'Shannon-Wiener'index[J]. Global Ecology and Biogeography, 2003, 12:177-179.
[51] Lemos L N, Fulthorpe R R, Triplett E W, et al. Rethinking microbial diversity analysis in the high throughput sequencing era[J]. Journal of Microbiological Methods, 2011, 86(1):42-51.
[52] Magurran A E. Measuring biological diversity[M]. Hoboken:Wiley-Blackwell, 2004.
[53] Simpson E H. Measurement of diversity[J]. Nature, 1949, 163(4148):688.
[54] Hill M O. Diversity and evenness:A unifying notation and its consequences[J]. Ecology, 1973, 54:427-432.
[55] Chao A, Gotelli N J, Hsieh T C, et al. Rarefaction and extrapolation with Hill numbers:A framework for sampling and estimation in species diversity studies[J]. Ecological Monographs, 2014, 84(1):45-67.
[56] Alberdi A, Gilbert M T P. hilldiv:An R package for the integral analysis of diversity based on Hill numbers[J]. bioRxiv, 2019, doi:10.1101/545665.
[57] Vane-Wright R I, Humphries C J, Williams P H. What to protect?-systematics and the agony of choice[J]. Biological Conservation, 1991, 55(3):235-254.
[58] Jaccard P. The distribution of the flora in the alpine zone[J]. New Phytologist, 1912, 11(2):37-50.
[59] Sørensen T. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analysis of the vegetation on Danish commons[J]. Biologiske Skrifter, 1948, 5(4):1-34.
[60] Dice L R. Measures of the amount of ecologic association between species[J]. Ecology, 1945, 26(3):297-302.
[61] Odum E P. Bird populations of the highlands (North Carolina) plateau in relation to plant succession and avian invasion[J]. Ecology, 1950, 31(4):587-605.
[62] Bray J R, Curtis J T. An ordination of the upland forest communities of Southern Wisconsin[J]. Ecological Monographs, 1957, 27(4):325-349.
[63] Legendre P, Legendre L. Developments in Environmental Modelling[M]. Amsterdam:Elsevier, 1998.
[64] Legendre P, De Cáceres M. Beta diversity as the variance of community data:Dissimilarity coefficients and partitioning[J]. Ecology Letters, 2013, 16(8):951-963.
[65] R Core Team. R:A language and environment for statistical computing[EB/OL].[2021-01-09]. https://www.rproject.org/.
[66] Oksanen J, Blanchet F G, Friendly M, et al. vegan:Community Ecology Package[EB/OL].[2021-06-14]. https://github.com/vegandevs/vegan.
[67] Faith D P. Conservation evaluation and phylogenetic diversity[J]. Biological Conservation, 1992, 61(1):1-10.
[68] Webb C O, Ackerly D D, McPeek M A, et al. Phylogenies and community ecology[J]. Annual Review of Ecology and Systematics, 2002, 33(1):475-505.
[69] Faith D P, Baker A M. Phylogenetic diversity (PD) and biodiversity conservation:Some bioinformatics challenges[J]. Evolutionary Bioinformatics Online, 2007, 2:121-128.
[70] Lozupone C, Knight R. UniFrac:A new phylogenetic method for comparing microbial communities[J]. Applied and Environmental Microbiology, 2005, 71(12):8228-8235.
[71] Paliy O, Shankar V. Application of multivariate statistical techniques in microbial ecology[J]. Molecular Ecology, 2016, 25(5):1032-1057.
[72] Clarke K R. Non-parametric multivariate analyses of changes in community structure[J]. Australian Journal of Ecology, 1993, 18(1):117-143.
[73] Anderson M J. A new method for non-parametric multivariate analysis of variance[J]. Austral Ecology, 2001, 26(1):32-46.
[74] Mielke P W, Berry K J. Permutation methods:A distance function approach[M]. New York:Springer, 2001.
[75] Mantel N. The detection of disease clustering and a generalized regression approach[J]. Cancer Research, 1967, 27(2):209-220.
[76] Pearson K L. On lines and planes of closest fit to systems of points in space[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1901, 2(11):559-572.
[77] Hotelling H. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology, 1933, 24(6):417-441.
[78] Hill M O. Correspondence analysis:A neglected multivariate method[J]. Journal of the Royal Statistical Society. Series C (Applied Statistics), 1974, 23(3):340-354.
[79] Hill M O. Reciprocal averaging:An eigenvector method of ordination[J]. Journal of Ecology, 1973, 61:237-249.
[80] Rao C R. The use and interpretation of principal component analysis in applied research[J]. Sankhyā:The Indian Journal of Statistics, Series A (1961-2002), 1964, 26(4):329-358.
[81] Ter Braak C J F. Canonical correspondence analysis:A new eigenvector technique for multivariate direct gradient analysis[J]. Ecology, 1986, 67(5):1167-1179.
[82] 马海霞,张丽丽,孙晓萌,等.基于宏组学方法认识微生物群落及其功能[J].微生物学通报, 2015, 42(5):902-912.