Exclusive: Precise pollution control and green development

Mechanism of organic membrane aging during water treatment: Current status and progress

  • CHEN Yichen ,
  • DAI Danyang ,
  • SHI Lei ,
  • CHENG Rong ,
  • ZHENG Xiang
Expand
  • 1. School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China;
    2. Collaborative innovation and industrial development research center for Membrane technology, Renmin University of China, Beijing 100872, China

Received date: 2021-02-15

  Revised date: 2021-07-14

  Online published: 2022-03-27

Abstract

In the past 20 years, China has made a great progress in the field of the membrane, which plays an important role in the water resources, the new energy, the traditional industrial technology transformation and other related fields. In order to accurately evaluate the service life of the membranes to determine the economical and feasible replacement cycle and the postdisposal plan, this paper systematically reviews the internal and external factors, the characterization methods and the performance parameters that affect the membrane aging, and also discusses the membrane performance factors, the chemical/physical properties, the analysis methods and their interrelationships. The inconsistent research results between the laboratory simulation and the actual operation show that in the study of the membrane aging process it is necessary to consider not only the interaction between the membrane material and the chemical cleaning agent, but also the interaction between the membrane and its surface contaminants. Due to the complexity of the membrane aging process, the life cycle analysis is one of the feasible methods to assess the impact of the membrane aging.

Cite this article

CHEN Yichen , DAI Danyang , SHI Lei , CHENG Rong , ZHENG Xiang . Mechanism of organic membrane aging during water treatment: Current status and progress[J]. Science & Technology Review, 2022 , 40(4) : 23 -34 . DOI: 10.3981/j.issn.1000-7857.2022.04.003

References

[1] Chen W, Gu Z, Ran G, et al. Application of membrane separation technology in the treatment of leachate in China:A review[J]. Waste Management, 2020, 121:127-140.
[2] Juan-Manuel R, Martin M. Breaking separation limits in membrane technology[J]. Journal of Membrane Science, 2018, 566:301-306.
[3] Padaki M, Murali R S, Abdullah M S, et al. Membrane technology enhancement in oil-water separation:A review[J]. Desalination, 2015, 357:197-207.
[4] 郑祥, 魏源送, 王志伟, 等. 中国水处理行业可持续发展战略研究报告(膜工业卷Ⅲ)[M]. 北京:中国人民大学出版社, 2019:1-12.
[5] Tang C Y, Yang Z, Guo H, et al. Potable water reuse through advanced membrane technology[J]. Environmental Science and Technology, 2018, 52(18):10215-10223.
[6] Alihemati Z, Hashemifard S A, Matsuura T, et al. Current status and challenges of fabricating thin film composite forward osmosis membrane:A comprehensive roadmap[J]. Desalination, 2020, 491:114557.
[7] Kang G D, Cao Y M. Application and modification of poly (vinylidene fluoride) (PVDF) membranes-A review[J]. Journal of Membrane Science, 2014, 463(1):145-165.
[8] Zhang J, Xiao K, Huang X. Full-scale MBR applications for leachate treatment in China:Practical, technical, and economic features[J]. Journal of Hazardous Materials, 2020, 389:122-138.
[9] Liao Y, Alnour B, Esmat M, et al. A review of membrane fouling and its control in algal-related membrane processes[J]. Bioresource Technology, 2018, 364:343-358.
[10] Regula C, Carretier E, Wyart Y, et al. Chemical cleaning/disinfection and ageing of organic UF membranes:A review[J]. Water Research, 2014, 56:325-365.
[11] Robinson S, Abdullah S Z, Bérubé P, et al. Ageing of membranes for water treatment:Linking changes to performance[J]. Journal of Membrane Science, 2016, 503:177-187.
[12] Muller N, Handge U A, Abetz V. Physical ageing and lifetime prediction of polymer membranes for gas separation processes[J]. Journal of Membrane Science, 2016, 516:33-46.
[13] Zhai L, Pan Y, Guo Y, et al. International comparative study on nanofiltration membrane technology based on relevant publications and patents[J]. Scientometrics, 2014, 101(2):1361-1374.
[14] Mohan S M, Nagalakshmi S. A review on aerobic selfforming dynamic membrane bioreactor:Formation, performance, fouling and cleaning[J]. Journal of Water Process Engineering, 2020, 37:101541.
[15] Wang Z W, Ma J X, Tang C Y, et al. Membrane cleaning in membrane bioreactors:A review[J]. Journal of Membrane Science, 2014, 468:276-307.
[16] Bagheri M, Mirbagheri S A. Critical review of fouling mitigation strategies in membrane bioreactors treating water and wastewater[J]. Bioresource Technology, 2018, 258:318-334.
[17] Gaudichet-maurin E, Thominette F. Ageing of polysulfone ultrafiltration membranes in contact with bleach solutions[J]. Journal of Membrane Science, 2006, 282(1):198-204.
[18] Vitaly G, Roy H, Robert C, et al. Application of nanoscale probes for the evaluation of the integrity of ultrafiltration membranes[J]. Journal of Membrane Science, 2006, 276(1):185-192.
[19] Zhang Y, Wang J, Gao F, et al. A comparison study:The different impacts of sodium hypochlorite on PVDF and PSF ultrafiltration (UF) membranes[J]. Water Research, 2017, 109:227-236.
[20] Christopher G, Frankin J, Gerringer F, et al. Enhanced oxidation of polyamide membranes using monochloramine and ferrous iron[J]. Journal of Membrane Science, 2005, 258(1):64-70.
[21] Bégoin L, Rabiller-baudry M, Chaufer B, et al. Methodology of analysis of a spiral-wound module. Application to pes membrane for ultrafiltration of skimmed milk[J]. Desalination, 2006, 192(1):40-53.
[22] Bégoin L, Rabiller-baudry M, Chaufer B, et al. Ageing of PES industrial spiral-wound membranes in acid whey ultrafiltration[J]. Desalination, 2005, 192(1):25-39.
[23] Hsissou R, Seghiri R, Benzekri Z, et al. Polymer composite materials:A comprehensive review[J]. Composite Structures, 2021:113640.
[24] Wienk M, Meuleman E, Borneman Z, et al. Chemical treatment of membranes of a polymer blend:Mechanism of the reaction of hypochlorite with poly(vinyl pyrrolidone)[J]. Journal of Polymer Science, Part A:Polymer Chemistry, 1995, 33(1):49-54.
[25] Landaburu J, Garciao R, Molina S, et al. Fouling prevention, preparing for reuse and membrane recycling. Towards circular economy in RO desalination[J]. Desalination, 2016, 393:16-30.
[26] Costa R, Alkmin R, Amaral M, et al. Ageing effect on chlorinated polyethylene membrane of an MBR caused by chemical cleaning procedures[J]. Desalination Water Treatment, 2015, 53:1460-1470.
[27] Causserand C, Rouaix S, Lafaille J, et al. Ageing of polysulfone membranes in contact with bleach solution:Role of radical oxidation and of some dissolved metal irons[J]. Chemical Engineering and Processing, 2008, 47(1):48-56.
[28] Delattre J, Rabaud B, Bréhant A, et al. Ageing of hollow fiber membranes in polyvinylidene fluoride (PVDF) used in water treatment[J]. Procedia Engineering, 2012, 44:764-767.
[29] Pellegrin B, Gaudichet-Maurin E, Causserand C. Mechano-chemical ageing of PES/PVP ultrafiltration membranes used in drinking water production[J]. Water Science & Technology Water Supply, 2013, 13(2):541-551.
[30] Ettori A, Gaudichet-maurin E, Schrotter J, et al. Permeability and chemical analysis of aromatic polyamide based membranes exposed to sodium hypochlorite[J]. Journal of Membrane Science, 2011, 375(1):220-230.
[31] Suzuki T, Tanaka R, Tahara M, et al. Relationship between performance deterioration of a polyamide reverse osmosis membrane used in a seawater desalination plant and changes in its physicochemical properties[J]. Water Research, 2016, 100:326-336.
[32] Verbeke R, Gómez V, Vankelecom I F. Chlorine-resistance of reverse osmosis (RO) polyamide membranes[J]. Progress in Polymer Science, 2017, 72:1-15.
[33] Hedir A, Moudoud M, Lamrous O, et al. Ultraviolet radiation aging impact on physicochemical properties of crosslinked polyethylene cable insulation[J]. Journal of Applied Polymer Science, 2020, 137:48575.
[34] Zhang F, Zhao Y, Wang D, et al. Current technologies for plastic waste treatment:A review[J]. Journal of Cleaner Production, 2020, 282:124523.
[35] Simon A, Mcdonald J A, Khan S J, et al. Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals[J]. Journal of Membrane Science, 2013, 447:153-162.
[36] Celina M, Linde E, Brunson D, et al. Overview of accelerated aging and polymer degradation kinetics for combined radiation-thermal environments[J]. Polymer Degradation and Stability, 2019, 166:353-378.
[37] 胡保安, 成琼, 张东, 等. 聚偏氟乙烯中空纤维膜的耐辐射性能研究[J]. 化学工程, 2007(10):34-38.
[38] Yu S, Zhang X, Li F, et al. Influence of low dose gamma-ray irradiation on the performance and degradation of PVDF ultrafiltration membrane[J]. Radiation Physics and Chemistry, 2017, 136:38-43.
[39] Kong Z, Wei J, Yang L, et al. Stability of acrylic acid grafted poly (vinylidene fluoride) hollow fiber membrane prepared by high energy electron beam[J]. Journal of Applied Polymer Science, 2014, 131(23):205-212.
[40] Chennamsetty R, Escobar I. Effect of ion beam irradiation on two nanofiltration water treatment membranes[J]. Separation Science and Technology, 2008, 43(16):4009-4029.
[41] Combernoux N, Schrive L, Labed V, et al. Study of polyamide composite reverse osmosis membrane degradationin water under gamma rays[J]. Journal of Membrane Science, 2015, 480:64-73.
[42] Ariza M, Pradanos P, Rico R, et al. X-ray action on polymeric membrane surfaces:A chemical and morphological characterization[J]. Surface and Interface Analysis, 2003, 35(4):360-368.
[43] Rama C, Isabel E. Evolution of a polysulfone nanofiltration membrane following ion beam irradiation[J]. Langmuir, 2008, 24(10):5569-5579.
[44] Zhang X, Niu L, Li F, et al. Effect of gamma-ray irradiation at low doses on the performance of PES eltrafiltration membrane[J]. Radiation Physics and Chemistry, 2016, 127:127-132.
[45] Lara R, Benavente J. Effect of ionizing radiation on a ceramic microporous membrane[J]. Journal of the European Ceramic Society, 2007, 27(13):4251-4255.
[46] 杨慧. 热塑性聚氨酯弹性体的老化与防老化研究[D]. 厦门:厦门大学, 2017.
[47] Qin J X, Jiang J Q, Tao Y J, et al. Sunlight tracking and concentrating accelerated weathering test applied in weatherability evaluation and service life prediction of polymeric materials:A review[J]. Polymer Testing, 2021, 93:106940.
[48] Liu L P, Cao X F. Research and development on the antiaging polymer coatings[J]. Advanced Materials Research, 2014, 941:1589-1592.
[49] Causserand C, Rouaix S, Lafaille J, et al. Degradation of polysulfone membranes due to contact with bleaching solution[J]. Desalination, 2006, 199(1):70-72.
[50] Feng C.Y, Khulbe K C, Matsuura T, et al. Recent progresses in polymeric hollow fiber membrane preparation, characterization and applications[J]. Separation and Purification Technology, 2013(111):43-71.
[51] Palencia M, Lerma T, Víctor P. Description of fouling, surface changes and heterogeneity of membranes by color-based digital image analysis[J]. Journal of Membrane Science, 2016, 510:229-237.
[52] Abdullah S, Berube P, Horne D. SEM imaging of membranes:Importance of sample preparation and imaging parameters[J]. Journal of Membrane Science, 2014, 463:113-125.
[53] Ross G, Watts J, Hill M, et al. Surface modification of poly (vinylidene Fluoride) by alkaline treatment part 2. Process modification by the use of phase transfer catalysts[J]. Polymer, 2001, 42(2):403-413.
[54] Hajibabania S, Antony A, Leslie G, et al. Relative impact of fouling and cleaning on PVDF membrane hydraulic performances[J]. Separation and Purification Technology, 2012, 90:204-212.
[55] Hashim A, Liu Y, Li K. Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution[J]. Chemical Engineering Science, 2011, 66(8):1565-1575.
[56] Simon A, Nghiem L. Effects of hypochlorite exposure on morphologyand trace organic contaminant rejection by NF/RO membranes[J]. Membrane Water Treatment, 2014, 5(4):235-250.
[57] Arkhangelsky E, Kuzmenko D, Gitis V, et al. Impact of chemical cleaning on properties and functioning of polyethersulfone membranes[J]. Journal of Membrane Science, 2007, 305(1):176-184.
[58] Wang P, Wang Z, Wu Z, et al. Effect of hypochlorite cleaning on the physiochemical characteristics of polyvinylidene fluoride membranes[J]. Chemical Engineering Journal, 2010, 165(2):1050-1056.
[59] Jung B, Yoon J, Kim B, et al. Effect of molecular weight of polymeric additives on formation, permeation properties and hypochlorite treatment of asymmetric polyacrylonitrile membranes[J]. Journal of Membrane Science, 2004, 243(1):45-57.
[60] 刘珂. 次氯酸钠化学清洗对超滤膜性能影响的研究[D]. 哈尔滨:哈尔滨工业大学, 2019.
[61] Wolff S, Zydney A. Effect of bleach on the transport characteristics of polysulfone hemodialyzers[J]. Journal of Membrane Science, 2004, 243(1):389-399.
[62] Simon A, Mcdonald J A, Khan S J, et al. Effects of caustic cleaning on pore size of nanofiltration membranes and their rejection of trace organic chemicals[J]. Journal of Membrane Science, 2013, 447:153-162.
[63] Levitsky I, Duek A, Naim R, et al. Cleaning UF membranes with simple and formulated solutions[J]. Chemical Engineering Science, 2012, 69(1):679-683.
[64] 高圣华, 张晓, 张岚. 饮用水中病毒的健康危害与控制[J]. 净水技术, 2020(3):1-8.
[65] Goswami K P, Pugazhenthi G. Credibility of polymeric and ceramic membrane filtration in the removal of bacteria and virus from water:A review[J]. Journal of Environmental Management, 2020, 268:110583.
[66] 中华人民共和国卫生部. 生活饮用水卫生标准:GB 5749-2006[S]. 北京:中国标准出版社, 2006.
[67] USEPA. Technologies and costs document for the final long term 2 enhanced surface water treatment rule and final stage 2 disinfectants and disinfection byproducts rule:EPA 815-R-05-013[S]. Washington DC:US Environmental Protection Agency, 2005.
[68] USEPA. 2018 Edition of the drinking water standards and health advisories tables:EPA 822-S-12-001[S]. Washington DC:US Environmental Protection Agency, 2018.
[69] FPT Committee on Drinking Water. Guidelines for Canadian drinking water quality summary table[S]. Ottawa:Health Canada, 2019.
[70] 郑祥, 刘俊新. MBR对污水中肠道模型病毒的去除效应[J]. 中国科学(B辑:化学), 2007, 37(4):390-396.
[71] Clinical characteristics of 2019 novel coronavirus infection in China[EB/OL]. (2020-02-09)[2020-02-22]. https://doi.org/10.1101/2020.02.06.20020974.
[72] Mohan A, Masaaki K, Thanh N, et al. Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation:review[J]. Water Research, 2017, 121:258-269.
[73] Pype M, Donose B, Martí L, et al. Virus removal and integrity in aged RO membranes[J]. Water Research, 2016, 90:167-175.
[74] Antony A, Branch A, Leslie G, et al. Impact of membrane ageing on reverse osmosis performance-implications on validation protocol[J]. Journal of Membrane Science, 2016, 520:37-44.
Outlines

/