Exclusive: Corrosion and protection technology of aviation materials

Effect of shipborne environment on corrosion resistance and fatigue property of 2124 aluminum alloy

  • ZHAN Zhongwei ,
  • SUN Zhihua ,
  • GE Yulin
Expand
  • Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China

Received date: 2021-08-27

  Revised date: 2021-11-20

  Online published: 2022-04-20

Abstract

Shipborne environment is the main service circumstance of aircraft equipment in the future, which combines features of high temperature, high relative humidity, high salinity from marine environment and acidic gas from shipborne equipment. Aluminum alloys suffer severe corrosion in such an environment. In this study acidic salt spray test is used to simulate the shipborne environment and applied to 2124 aluminum alloys with three different anodic oxidations, i.e., chromic acid anodization (CAA), boric-sulfuric acid anodization (BSAA) and malic-sulfuric acid anodization (MSAA). The corrosion resistance and fatigue property of anodized 2124 alloys are evaluated at different cycles of the test. The structure evolution of anode oxide films is characterized by electrochemical impedance spectroscopy(EIS). The axial fatigue life of anodized samples is measured after different cycles of the test. The fracture morphology is also studied. The results suggests that anodic oxidation can significantly enhance the corrosion resistance of 2124 alloy. BSAA and MSAA samples exhibit better corrosion resistance than CAA samples. Corrosion signs of the substrate of CAA appear after 4 cycles of the test, while after 6 cycles for BSAA and MSAA. The fatigue life generally declines with salt spray test cycles, which is consistent with the corrosion resistance performance. However, MSAA has the highest residual fatigue life.

Cite this article

ZHAN Zhongwei , SUN Zhihua , GE Yulin . Effect of shipborne environment on corrosion resistance and fatigue property of 2124 aluminum alloy[J]. Science & Technology Review, 2022 , 40(5) : 69 -77 . DOI: 10.3981/j.issn.1000-7857.2022.05.008

References

[1] Ketcham S J.Accelerated laboratory corrosion test for ma-terials and finishes used in naval aircraft[R].Naval Air Systems Command Report, 1977.
[2] 王素华, 王秀霞, 樊庆和.舰载直升机的腐蚀与防护[J].海军航空工程学院学报, 2004, 19:343-345.
[3] 孙志华, 汤智慧, 李斌.海洋环境服役飞机的全面腐蚀控制[J].装备环境工程, 2014, 11(6):35-39.
[4] 骆晨, 李明, 孙志华, 等.海洋大气环境中飞机的环境损伤和环境适应性[J].航空材料学报, 2016, 36(3):101-107.
[5] 孙志华, 刘明, 张晓云, 等.高强度钢代镉铝基涂层耐海洋环境腐蚀性能评价[J].装备环境工程, 2017, 14(12):71-76.
[6] 詹中伟, 孙志华, 汤智慧, 等.离子镀铝与离子液体电镀铝涂层性能对比研究[J].装备环境工程, 2017, 14(5):74-81.
[7] 詹中伟, 孙志华, 汤智慧, 等.后处理对离子液体电镀铝合金涂层耐蚀性能的影响[J].电镀与精饰, 2015, 37(11):1-6.
[8] 刘明, 蔡健平, 孙志华, 等.7B04铝合金海洋性大气腐蚀研究[J].装备环境工程, 2010, 7(6):163-166.
[9] 骆晨, Albu S P, 孙志华, 等.硼酸-硫酸阳极氧化2A97 Al-Cu-Li合金在热带海洋大气环境中的初期腐蚀机理[J].材料工程, 2016, 44(9):8-15.
[10] 陈跃良, 卞贵学, 衣林, 等.腐蚀和疲劳交替作用下飞机铝合金疲劳性能及断裂机理研究[J].机械工程学报, 2010, 48(20):70-76.
[11] 谭晓明, 张丹峰, 卞贵学, 等.腐蚀对新型高强度铝合金疲劳裂纹萌生机制及扩展行为的作用研究[J].机械工程学报, 2014, 50(20):76-83.
[12] 谭晓明, 张丹峰, 陈跃良.基于微观结构的2B06铝合金全寿命概率模拟[J].航空学报, 2012, 33(8):1434-1439.
[13] Li H, Fu L, Lin L, et al.Low-cycle fatigue behavior and corrosion mechanism of pre-corroded 2A70-T6 alumi-num alloy[J].Anti-Corrosion Methods and Materials, 2020, 67(2):228-239.
[14] Arriscorreta C A, Hoeppner D W.Effects of prior corro-sion and stress in corrosion fatigue of aluminum alloy 7075-T6[J].Corrosion, 2012, 68(10):950-960.
[15] Co N E C, Burns J T.Effects of macro-scale corrosion damage feature on fatigue crack initiation and fatigue be-havior[J].International Journal of Fatigue, 2017, 103:234-247.
[16] Co N E C, Burns J T.Effects of micro-scale corrosion damage features and local microstructure on fatigue crack initiation location[J].International Journal of Fa-tigue, 2021, 150:1-8.
[17] 中国人民解放军总装备部电子信息基础部.GJB 150.11A-2009军用装备实验室环境试验方法第 11部分:盐雾试验[S].北京:总装备部军标出版发行部, 2009.
[18] 张令波, 程从高.酸性盐雾对航空材料及结构件腐蚀影响研究[J].航空标准化与质量, 2015, 5:43-47.
[19] 航空工业部621所.HB/Z 118-1987铝及铝合金铬酸阳极氧化工艺[S].北京:航空工业部, 1987.
[20] SAE Aerospace.Anodic coatings for aluminum and alu-minum Alloys:AMSA8625-2000[S].USA:SAE Interna-tional, 2000.
[21] 中国航空工业集团公司北京航空材料研究院.Q/6SZ 2881-2012铝合金苹果酸-硫酸阳极氧化工艺及质量检验[S].北京:中国航空工业集团公司北京航空材料研究院, 2012.
[22] 中国航空工业总公司六二一研究所.HB 5287-1996金属材料轴向加载疲劳试验方法[S].北京:中国航空工业总公司第三○一研究所, 1996.
[23] Du N, Wang S X, Zhao Q, et al.Effects of boric acid on microstructure and corrosion resistance of boric/sulfuric acid anodic film on 7050 aluminum alloy[J].Transac-tions of Nonferrous Metals Society of China, 2012(22):1655-1660.
[24] 许旋, 罗一帆.添加剂对铝合金阳极氧化膜形成的影响[J].应用化学, 2002, 19(4):356-359.
[25] 刘佑厚, 井玉兰.铝合金硼酸-硫酸阳极氧化工艺研究[J].电镀与精饰, 2000, 22(6):8-11.
[26] 陈跃良, 吴省均, 张勇, 等.不同表面状态2024-T3铝 合金腐蚀行为及DFR退化规律[J].装备环境工程, 2020, 17(6):44-50.
Outlines

/