Papers

Quantitative analysis of topics editing in Ministry of Science and Technology's WeChat official account based on AToT model

  • ZHANG Haodong ,
  • ZHAO Lixin
Expand
  • National Academy of Innovation Strategy, Beijing 100863, China

Received date: 2020-06-16

  Revised date: 2021-08-20

  Online published: 2022-04-27

Abstract

Like the Facebook, the Twitter and the TikTok, the WeChat is a well-known mobile instant messaging product with over 1 billion active accounts, and it supports text messages, voices, videos, pictures and payments. The Ministry of Science and Technology of the People's Republic of China makes the science and technology management through various social media, including the WeChat, and the "Rui Ke Ji(Sharp S&T)" is the official WeChat account of the Ministry of Science and Technology, providing information for scientists and technicians. Unlike the editing of the traditional science and technology newspapers and periodicals, the WeChat official account "Rui Ke Ji" has its own characteristics in the manuscript selection and publication (push). In order to see the coverage of the topics of the WeChat articles changing over the time and the relationship between the topics of the articles and the view accounts, a Bias probability topic model, AToT, is used to quantitatively analyze and mine the contents of the articles in the "Rui Ke Ji" and its sub account the "Rui dong yuan(Sharp Dynamic Source)" in this paper. The results reveal where the ministry's publicity lies and how the topics of the articles change over the time. The reading preferences of Chinese scientists and technicians are analyzed and it is shown that there is a certain relationship between the contents of the WeChat articles and the page views. This study helps to improve the editing level of the new media and the science and technology publicity.

Cite this article

ZHANG Haodong , ZHAO Lixin . Quantitative analysis of topics editing in Ministry of Science and Technology's WeChat official account based on AToT model[J]. Science & Technology Review, 2022 , 40(6) : 110 -121 . DOI: 10.3981/j.issn.1000-7857.2022.06.013

References

[1] WeChat Wikipedia[EB/OL].[2018-08-01]. https://en.wikipedia.org/wiki/WeChat.
[2] Number of monthly active WeChat users from 2nd quarter 2010 to 3rd quarter 2016[EB/OL].[2018-08-01]. https://www.statista.com/statistics/255778/number-of-active-wechat-messenger-accounts.
[3] 孔云, 廖寅, 资芸, 等. 基于微信公众账号的图书馆移动信息服务研究[J]. 情报杂志, 2013, 32(9):167-170.
[4] WeChat[EB/OL].[2018-08-01]. http://tech.qq.com/a/20160119/005085.htm.
[5] 侯钰莹. 探析新媒体背景下电视新闻记者的转变与创新[J]. 新闻研究导刊, 2018, 9(3):204.
[6] 朱杰, 张丽娟. 从"内容为王" 的角度看微信公众号的兴衰[J]. 新闻论坛, 2019(1):7-10.
[7] 张卓, 王飞. 新媒体"社会共享" 的崛起与逻辑嬗变[J]. 新媒体与社会, 2017(3):62-75.
[8] 满静. 全民阅读下新媒体产业的发展浅谈[J]. 出版广角, 2019(1):43-45.
[9] 刘佳静, 金洁琴, 赵乃瑄. 高校图书馆微信公众号传播力评价研究——以"双一流" 大学为例[J]. 图书馆工作与研究, 2019(2):40-46.
[10] 王海燕. 图书馆微信公众平台传播影响力研究[J]. 图书馆工作与研究, 2015(9):28-31.
[11] 员立亭. 我国图书馆界微信研究述评[J]. 图书馆工作与研究, 2018(4):25-30.
[12] 董玥, 王雷, 刘健. 新型智库微信公众平台信息传播影响力评价体系研究[J]. 情报科学, 2018, 36(12):41-45.
[13] 王鲁峰, 王碧莹, 张玉珊. 高校微信公众号的传播与互动研究——基于15个高校微信公众号的个案分析[J]. 新媒体研究, 2019(1):17-22.
[14] 岳云鹏. 高校微信公众号建设思考——以河北医科大学官方微信公众号为例[J]. 新媒体研究, 2019(1):63-64.
[15] 冀芳, 张夏恒. 学术期刊微信公众平台影响力研究——基于5种CSSCI来源期刊的实证分析[J]. 情报杂志, 2016, 35(4):147-151.
[16] 林琳. 人民日报社的"侠客岛" 何以名动微信公众号"江湖"[J]. 中国记者, 2015(2):44-45.
[17] 李明德, 高如. 媒体微信公众号传播力评价研究——基于20个陕西媒体微信公众号的考察[J]. 情报杂志, 2015, 34(7):141-147.
[18] 夏保国, 常亚平. 政务微信的沟通机制研究——基于技术接受模型的视角[J]. 国家行政学院学报, 2014(3):102-106.
[19] 蒋天民, 胡新平. 政务微信的发展现状、问题分析及展望[J]. 现代情报, 2014, 34(10):88-91.
[20] 李宗富, 张向先. 政务微信公众号服务质量的关键影响因素识别与分析[J]. 图书情报工作, 2016, 60(14):84-93.
[21] 刘佐. 基于微信公众平台的数据挖掘与可视化研究[D]. 北京:华北电力大学, 2017.
[22] Qiu J, Li Y, Tang J, et al. The lifecycle and cascade of WeChat social messaging groups[C]//Proceedings of the 25th International Conference on World Wide Web. Montreal:ACM, 2016:311-320.
[23] 李松丽. 基于微信的社会舆论热点挖掘及分析模型研究[D]. 武汉:华中师范大学, 2016.
[24] 张昊东, 陈锐, 郑凯, 等. 科协系统改革监测平台指标设计和软件平台建设[J]. 学会, 2018, 353(4):33-38.
[25] Zhang H, Zhu L, Xu S, et al. XML-based document retrieval in chinese diseases question answering system[C]//FTRA international conference on mobile, ubiquitous, and intelligent computing. South Kore:Springer, 2014.
[26] Tseng Y H, Lin C J, Lin Y I. Text mining techniques for patent analysis[J]. Information Processing & Management, 2007, 43(5):1216-1247.
[27] Wang Z, Zhu L, Xu S, et al. Simple interrogative sentence analysis based on CRF[C]//2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW). Omaha:ACM, 2016:21-24.
[28] Xu S, An X, Zhu L, et al. A CRF-based system for recognizing chemical entities in biomedical literature[C]//In Proceedings of the 4th BioCreative Challenge Evaluation Workshop. Bethesda, Maryland:BioCreative, 2013:152-157.
[29] Xu S, An X, Zhu L, et al. A CRF-based system for recognizing chemical entity mentions (CEMs) in biomedical literature[J]. Journal of Cheminformatics, 2015, 7(Supp 11):9.
[30] Chen H, Zhang Y, Zhang G, et al. Modeling technological topic changes in patent claims[C]//2015 Portland International Conference on Management of Engineering & Technology. Portland:IEEE, 2015:2049-2059.
[31] Rosen-Zvi M, Griffiths T, Steyvers M, et al. The AuthorTopic model for authors and documents[C]//UAI'04, Proceedings of the 20th Conference in Uncertainty in Artificial Intelligence. Banff:AUAI Press, 2004.
[32] Mimno D, Mccallum A. Expertise modeling for matching papers with reviewers[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, California:ACM, 2007:500-509.
[33] Kawamae N. Author interest topic model[C]//Proceeding of the International ACM SIGIR Conference on Research and Development in Information Retrieval. Geneva:ACM, 2010:887-888.
[34] Mccallum A, Corradaemmanuel A, Wang X. Topic and role discovery in social networks[J]. Ijcai, 2005, 30(2):786-791.
[35] Wang X, Mohanty N, Mccallum A. Group and topic discovery from relations and text[J]. Nips, 2007, 30(2):1449-1456.
[36] Blei D, Lafferty J. Dynamic topic models[C]//Machine Learning, Proceedings of the Twenty-Third International Conference. Pittsburgh:ACM, 2006.
[37] 卢盛祺, 管连, 金敏等. LDA模型在网络视频推荐中的应用[J]. 微型机与应用, 2016, 35(11):74-79.
[38] 廖列法, 勒孚刚, 朱亚兰. LDA模型在专利文本分类中的应用[J]. 现代情报, 2017, 37(3):35-39.
[39] 何锦群. LDA在信息检索中的应用研究[D]. 天津:天津理工大学, 2014.
[40] 张金瑞. 基于LDA的文本分类研究及其应用[D]. 郑州:郑州大学, 2016.
[41] Tan C, Wang C. Study on classification of news topic based on LDA model[J]. Computer Knowledge and Technology, 2014, 16:3795-3797.
[42] Stanford word segmenter[EB/OL].[2016-11-01]. http://nlp.stanford.edu/software/segmenter.shtml.
[43] Xu S, Shi Q, Qiao X, et al. Author-topic over time (AToT):A dynamic users' interest model[J]. Lecture Notes in Electrical Engineering, 2014, 274:239-245.
[44] Zhang H, Xu S, Wang Z, et al. Text and data mining of social media in science and technology publicity[C]//Portland International Conference on Management of Engineering & Technology(PICMET). Portland:IEEE, 2017.
[45] 史庆伟, 乔晓东, 徐硕, 等. 作者主题演化模型及其在研究兴趣演化分析中的应用[J]. 情报学报, 2013, 32(9):912-919.
[46] Griffiths T, Steyvers M. Finding scientific topics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(Suppl 1):5228-5235.
[47] Bowman K O, Shenton L R. Parameter estimation for the beta distribution[J]. Journal of Statistical Computation & Simulation, 1992, 43(3):217-228.
Outlines

/