Exclusive: Green and low carbon empower carbon neutrality

Matching relationship and influencing factors between urban air quality and land intensive use in Chinese cities

  • YANG Qunye ,
  • LIANG Yanqing ,
  • HUANG Zhiying ,
  • CUI Liye ,
  • MA Wanli ,
  • GE Jingfeng
Expand
  • 1. College of Resource and Environmental Science, Hebei Normal University, Shijiazhuang 050024, China;
    2. Lab of Environmental Change and Ecological Construction of Hebei Province, Shijiazhuang 050024, China;
    3. College of Land Science and Spatial Planning, Hebei University of Geosciences, Shijiazhuang 050031, China;
    4. National Territory Spatial Planning Research Center of Hebei Province, Shijiazhuang 050056, China

Received date: 2020-09-18

  Revised date: 2021-01-07

  Online published: 2022-06-10

Abstract

It is of great significance to study the interaction between air quality and land intensive use and the influencing factors from the point of view of space matching. This paper uses trend surface, spatial autocorrelation, gravity model, spatial dislocation model, grey correlation model and other methods to analyze the spatial differentiation law, spatial matching relationship and driving factors of air quality and land intensive use level in 290 cities across China. The results are as follows 1) In 2017, the air quality in cities across the country showed a central-peripheral structure with the central and southern Hebei urban agglomeration as the core and gradually improved outward, being an obvious agglomeration characteristic; the level of intensive use of urban land across the country presented a multi-core spatial structure with the Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta urban agglomerations being the cores, and their agglomeration characteristics were also obvious. 2) The air quality and the level of intensive land use in cities across the country were not spatially coordinated and matched, and the negative dislocation areas were mainly distributed in the Beijing-Tianjin-Hebei and Yangtze River Delta urban agglomerations, and the dislocation intensity presented a core-periphery spatial structure, the positive dislocation areas were distributed in the northeast, southwest, northwest and southern coastal areas, and the dislocation intensity presented a spatial distribution pattern decreasing from southeast to northwest; contributions of spatial dislocation had obvious regional differences, especially in the eastern region(. 3) The overall correlation between the indicators of national urban air quality and land intensive use was strong, in which the concentration of pollutants that affect air quality, the vegetation NDVI that affects the intensive use of land, the greening rate of built-up areas, and the land factors such as the average discharge of industrial wastewater were the main reasons for the spatial dislocation of the two systems.

Cite this article

YANG Qunye , LIANG Yanqing , HUANG Zhiying , CUI Liye , MA Wanli , GE Jingfeng . Matching relationship and influencing factors between urban air quality and land intensive use in Chinese cities[J]. Science & Technology Review, 2022 , 40(7) : 54 -64 . DOI: 10.3981/j.issn.1000-7857.2022.07.006

References

[1] 陈蓉,王美凤.经济发展不平衡、人口迁移与人口老龄化区域差异——基于全国287个地级市的研究[J].人口学刊, 2018, 40(3):71-81.
[2] Xu L T, Chen S S, Xu Y, et al. Impacts of land-use change on habitat quality during 1985-2015 in the Taihu Lake Basin[J]. Sustainability, 2019, 11(13):3513.
[3] 冯国强,李菁,武卓尔,等.道路交通拥堵与城市雾霾污染的关系研究[J].中国人口·资源与环境, 2020, 30(3):93-99.
[4] 梁照凤,陈文波,郑蕉.南昌市中心城区土地集约利用水平对主要大气污染物的影响[J].应用生态学报, 2018, 29(5):1705-1714.
[5] Peng J, Chen S, Lü H, et al. Spatiotemporal patterns of remotely sensed PM2.5 concentration in China from 1999 to 2011[J]. Remote Sensing of Environment, 2016, 174:l109-121.
[6] 郭一鸣,蔺雪芹,边宇.中国城市群空气质量时空演化特征及其影响因素[J].生态经济, 2019, 35(11):167-175.
[7] 马静,周创文, Gwilym Pryce.环境公正视角下空气质量和死亡人数的空间分析及关系研究——以河北省为例[J].人文地理, 2019, 34(6):45-52.
[8] 姜磊,周海峰,柏玲,等.中国城市空气质量指数(AQI)的动态变化特征[J].经济地理, 2018, 38(9):87-95.
[9] Guo H, Wang Y, Zhang H, et al. Characterization of criteria air pollutants in Beijing during 2014-2015[J]. Environmental Research, 2017, 154:334-344.
[10] 姜磊,周海峰,柏玲,等.空气质量指数(AQI)的社会经济影响因素分析——基于指数衰减效应视角[J].环境科学学报, 2018, 38(1):390-398.
[11] Lin X Q, Wang D. Spatiotemporal evolution of urban air quality and socioeconomic driving forces in China[J]. Journal of Geographical Sciences, 2016, 26(11):1533-1549.
[12] 姜磊,周海峰,柏玲,等.基于空间计量模型的中国城市化发展与城市空气质量关系[J].热带地理, 2019, 39(3):461-471.
[13] 方叶林,程雪兰,王芳.空气质量与旅游经济的时空关系及影响机理[J].经济管理, 2020, 42(1):140-154.
[14] 迟妍妍,张惠远,饶胜,等.珠江三角洲土地利用变化对特征大气污染物扩散的影响[J].生态环境学报, 2013, 22(10):1682-1687.
[15] 吕洁华,孙喆,张滨.新型城镇化与生态环境协调发展及关键因素判别[J].生态经济, 2020, 36(6):83-88.
[16] 彭冲,肖皓,韩峰. 2003-2012年中国城市土地集约利用的空间集聚演化及分异特征研究[J].中国土地科学, 2014, 28(12):24-31.
[17] 杨忍,王洋,徐茜,等.中国城市土地利用集约水平空间特征及其优化战略决策解析[J].干旱区资源与环境, 2016, 30(10):53-58.
[18] Jia Y Y, Lei G Y. Evaluation of intensive construction land use in the emerging city based on PSR-entropy model[J]. IOP Conference Series:Earth and Environmental Science, 2018, 108(4):1-7.
[19] 王少剑,黄永源.中国城市碳排放强度的空间溢出效应及驱动因素[J].地理学报, 2019, 74(6):1131-1148.
[20] 王群,王万茂,金雯.中国城市土地集约利用研究中的新观点和新方法:综述与展望[J].中国人口·资源与环境, 2017, 27(5):95-100.
[21] 王秀,姚玲玲,李阳,等.新型城镇化与土地集约利用耦合协调性及其时空分异——以黑龙江省12个地级市为例[J].经济地理, 2017, 37(5):173-180.
[22] 仉振宇,朱记伟,解建仓,等.西安市土地利用效益与城镇化耦合协调关系[J].水土保持研究, 2020, 27(4):308-316.
[23] 雷金睿,陈宗铸,吴庭天,等.海南岛东北部土地利用与生态系统服务价值空间自相关格局分析[J].生态学报, 2019, 39(7):2366-2377.
[24] Jing J S, Jing F G, Xiao M F, et al. Study on the relationship between PM2.5 concentration and intensive land use in Hebei Province based on a spatial regression model[J]. Creative Commons Attribution License, 2020, 9(18):306-313.
[25] 梁照凤,陈文波,郑蕉,等.南昌市中心城区主要大气污染物分布模拟及土地利用对其影响[J].应用生态学报, 2019, 30(3):1005-1014.
[26] 朱庆莹,陈银蓉,胡伟艳,等.中国土地集约利用与区域生态效率耦合协调度时空格局[J].农业工程学报, 2020, 36(4):234-243.
[27] 于凯阳,黄志炯,史博文,等.珠三角空气质量模拟关键不确定性来源识别[J].环境科学学报,2020,40(8):2952-2961.
[28] 胡书玲,余斌,卓蓉蓉,等.中国陆域地表人类活动与自然环境的空间关系研究[J].生态学报, 2020, 40(12):3935-3943.
[29] 闫涛,张晓平,陈浩,等. 2001-2016年中国地级以上城市经济的区域差异演变[J].经济地理, 2019, 39(12):11-20.
[30] 姜磊,周海峰,何世雄,等.雾霾背景下的城市化与空气质量协调发展的空间分析——以中国283个城市为例[J].水土保持研究, 2018, 25(6):306-313.
[31] 徐启渝,王鹏,舒旺,等.土地利用结构与空间格局对袁河水质的影响[J].环境科学学报, 2020, 40(7):2611-2620.
[32] 任彩凤,程艳妹,郑欣,等.基于均方差决策法的淮北市生态承载力评价[J].生态科学, 2019, 38(5):168-177.
[33] 王钊,李涛,杨山.中国省际入境旅游集散优势度与旅游经济效率的空间关系[J].地理研究, 2020, 39(4):892-906.
[34] 刘晓阳,黄晓东,丁志伟.长江经济带县域信息化水平的空间差异及影响因素[J].长江流域资源与环境, 2019, 28(6):1263-1275.
[35] 赵睿,焦利民,许刚,等.城市空间增长与人口密度变化之间的关联关系[J].地理学报, 2020, 75(4):695-707.
[36] 吴连霞,赵媛,马定国,等.江西省人口与经济发展时空耦合研究[J].地理科学, 2015, 35(6):742-748.
[37] 曾通刚,赵媛.中国老龄事业发展水平时空演化及其与经济发展水平的空间匹配[J].地理研究, 2019, 38(6):1497-1511.
[38] 史晨怡,周春山,余波.援藏与西藏自治区城镇化的耦合协调分析[J].世界地理研究, 2018, 27(3):42-54.
[39] 张芷若,谷国锋.中国科技金融与区域经济发展的耦合关系研究[J].地理科学, 2020, 40(5):751-759.
Outlines

/