[1] Motro R. Tensegrity structural systems for the future[M]. Oxford:Butterworth-Heinemann, 2006:1-257.
[2] Connelly R, Back A. Mathematics and tensegrity[J]. American Scientist, 1998, 86(2):142-151.
[3] Shibata M, Hirai S. Rolling locomotion of deformable tensegrity structure[J]. Mobile Robotics, 2009, 19(6):479-486.
[4] Caluwaerts K, Despraz J, Iscen A, et al. Design and control of compliant tensegrity robots through simulation and hardware validation[J]. Journal of the Royal Society Interface, 2014, 11(98):1-14.
[5] Caluwaerts K. Design and computational aspects of compliant tensegrity robots[D]. Ghent:Ghent University, 2014:127-158.
[6] Hirai S, Imuta R. Dynamic modeling of tensegrity robots rolling over the ground[C]//The 5th International Conference on Computational Methods (ICCM2014). Cambridge:Scien Tech Publisher, 2014:272-280.
[7] Bruce J. Design, building, and testing of SUPERball:A tensegrity robot to enable space exploration[D]. Santa Cruz:UC Santa Cruz, 2016:33-46.
[8] Sabelhaus A P, Bruce J, Caluwaerts, et al. System design and locomotion of SUPERball, an untethered tensegrity robot[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle:IEEE Publisher, 2015:2867-2873.
[9] Iscen A, Caluwaerts K, Bruce J, et al. Learning tensegrity locomotion using open-loop control signals and coevolutionary algorithms[J]. Artificial Life, 2015, 21(2):119-140.
[10] Sunspiral V, Gorospe G, Bruce J, et al. Tensegrity based probes for planetary exploration:Entry, descent and landing (EDL) and surface mobility analysis[C]//The 10th International planetary probe workshop (IPPW). San Jose:The Planetary Science Program, 2013:1-13.
[11] Kim K, Agogino A K, Agogino A M. Emergent formfinding for center of mass control of ball-shaped tensegrity robots[C]//International Conference on Autonomous Agents and Multiagent Systems. Istanbul:International Foundation for Autonomous Agents and Multiagent Systems, 2015:1-17.
[12] Kim K, Agogino A K, Toghyan A, et al. Robust learning of tensegrity robot control for locomotion through formfinding[C]//2015 IEEE/RSJ nternational Conference on Intelligent Robots and Systems (IROS). Hamburg:IEEE Publisher, 2015:5824-5831.
[13] Chen L H, Kim K, Tang E, et al. Soft spherical tensegrity robot design using rod-centered actuation and control[J]. Journal of Mechanisms and Robotics, 2017, 9(2):1-9.
[14] Kim K. On the locomotion of spherical tensegrity robots[D]. Berkeley:University of California, 2016:9-22.
[15] Chen L H, Cera B, Zhu E L, et al. Inclined surface locomotion strategies for spherical tensegrity robots[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver:IEEE Publisher, 2017:4976-4981.
[16] Kinjo T, Aoki T. Realization of jumping motion for walking robot with spherical outer shell[C]//The 4th International Conference on Design Engineering and Science (ICDES 2017). Ghent:IOP science, 2017:242-249.
[17] Rieffel J, Mouret J B. Adaptive and resilient soft tensegrity robots[J]. Soft Robotics, 2018, 5(3):1-12.
[18] Mcbride M K, Martinez A M, Cox L, et al. A readily programmable, fully reversible shape-switching material[J]. Science Advances, 2018, 4(8):1-7.
[19] Chung Y S, Lee J H, Jang J H, et al. Jumping tensegrity robot based on torsionally prestrained SMA springs[J]. ACS Applied Materials & Interfaces, 2019, 11(43):40793-40799.
[20] 李冰玉,阚子云,彭海军,等.基于张拉整体结构的连续型弯曲机械臂设计与研究[J].机器人, 2020, 42(6):686-696.
[21] Lee H, Jang Y, Choe J K, et al. 3D-printed programmable tensegrity for soft robotics[J]. Science Robotics, 2020(5):eaay9024.
[22] Paul C, Francisco J, Valero-Cuevas, et al. Design and control of tensegrity robots for locomotion[J]. IEEE Transactions on Robotics, 2006, 22:944-957.
[23] Hirai S, Koizumi Y, Shibata M, et al. Active shaping of a tensegrity robot via pre-pressure[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong:IEEE Publisher, 2013:19-25.
[24] Rovira A G, Tur J M M. Control and simulation of a tensegrity-based mobile robot[J]. Robotics and Autonomous Systems, 2009, 57(5):526-535.
[25] Lu Y, Xu X, Luo Y. Path planning for rolling locomotion of polyhedral tensegrity robots based on dijkstra algorithm[J]. Journal of the International Association for Shell and Spatial Structures, 2019, 60(4):273-286.
[26] Kim K, Agogino A K, Agogino A M. Rolling locomotion of cable-driven soft spherical tensegrity robots[J]. Soft Robot, 2020, 7(3):346-361.
[27] 李团结,车明奎.张拉整体结构外力与形变间关系分析及实验验证[J].西安电子科技大学学报, 2017, 44(1):24-28.
[28] 袁野.球形张拉整体机器人研究[D].哈尔滨:哈尔滨工程大学, 2016.
[29] 解一鸣.球形张拉整体机器人滚动分析与控制研究[D].哈尔滨:哈尔滨工业大学, 2018:58-66.
[30] 杜汶娟.基于张拉整体的可变结构体机器人移动步态研究[D].沈阳:中国科学院沈阳自动化研究所, 2017.
[31] Wei D W, Gao T, Mo X J, et al. Flexible bio-tensegrity manipulator with multi-degree of freedom and variable structure[J]. Chinese Journal of Mechanical Engineering, 2020(33):3.
[32] Wang Z J, Li K, He Q G, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity[J]. Advanced Materials, 2019, 31(7):1-8.
[33] 路达,刘金国,高海波.星球表面着陆巡视一体化探测机器人研究进展[J].航空学报, 2021, 42(1):100-116.
[34] Levin S M. Biotensegrity:The structural basis of life[M]. Scotland:Handspring Publishing, 2019:56-85.
[35] Ingber D E, Tensegrity I. Cell structure and hierarchical systems biology[J]. Journal of Cell Science, 2003, 116(7):1157-1173.
[36] Dawn H S, Sunspiral V, Teodorescu M. Morphological design for controlled tensegrity quadruped locomotion[C]//The 2016 IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway:IEEE, 2016:4714-4719.
[37] Sabelhaus A P. Tensegrity spines for quadruped robots[D]. Berkeley:University of California, Berkeley, 2019.
[38] Bliss T, Iwasaki T, Bart-Smith H. Central pattern generator control of a tensegrity swimmer[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18:586-597.
[39] Chen B, Jiang H. Swimming performance of a tensegrity robotic fish[J]. Soft Robot, 2019, 6(4):520-531.
[40] Tantaworrasilp A, Richardson R C. Metamorphic tensegrity structure for pipe inspection[C]//In IOP Conference Series:Materials Science and Engineering. Tokyo:IOP Publishing, 2020, 715(1):012087.
[41] Friesen J, Pogue A, Bewley T, et al. DuCTT:A tensegrity robot for exploring duct systems[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Publisher, 2014:4222-4228.
[42] Lee H, Jang Y, Choe J, et al. 3D-printed programmable tensegrity for soft robotics[J]. Science Robotics, 2020, 5(45):eaay9024.
[43] Wen L, Pan F, Ding X. Tensegrity metamaterials for soft robotics[J]. Science Robotics, 2020, 5(45):eabd9158.
[44] Vassart N, Motro R. Multiparametered form-finding method:Application to tensegrity systems[J]. International Journal of Space Structures, 1999, 14(2):147-154.
[45] Zhang L Y, Li Y, Cao Y P, et al. Stiffness matrix-based form-finding method of tensegrity structures[J]. Engineering Structures, 2014, 58(7):36-48.
[46] Feng X, Guo S. A novel method of determining the sole configuration of tensegrity structures[J]. Mechanics Research Communications, 2015, 69:66-78.
[47] Li X, Kong W, He J. A task-space form-finding algorithm for tensegrity robots[J]. IEEE Access, 2020, 8:100578-100585.
[48] Quirant J. Self-stressed systems comprising elements with unilateral rigidity:Self-stress states, mechanisms and tension setting[J]. International Journal of Space Structures, 2007, 22(4):203-214.
[49] Sanchez R, Maurin B, Kazi-Aoual M N, et al. Selfstress states identification and localization in modular tensegrity grids[J]. International Journal of Space Structures, 2007, 22(4):215-224.
[50] Lee S, Lee J. Form-finding of tensegrity structures with arbitrary strut and cable members[J]. International Journal of Mechanical Sciences, 2014, 85(8):55-62.
[51] Chen Y, Feng J, Wu Y. Novel form-finding of tensegrity structures using ant colony systems[J]. Journal of Mechanisms & Robotics, 2012, 4(3):310011-310017.
[52] Li Y, Feng X Q, Cao Y P, et al. A Monte Carlo formfinding method for large scale regular and irregular tensegrity structures[J]. International Journal of Solids & Structures, 2010, 47(14/15):1888-1898.
[53] Cai J, Feng J. Form-finding of tensegrity structures using an optimization method[J]. Engineering Structures, 2015, 104:126-132.
[54] Connelly R, Back A. Mathematics and tensegrity[J]. American Scientist, 1998, 86(2):142-151.
[55] Sultan C, Corless M, Skelton R E. The prestressability problem of tensegrity structures:Some analytical solutions[J]. International Journal of Solids and Structures, 2001, 38(30/31):5223-5252.
[56] Chen Y, Feng J, Ma R, et al. Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures[J]. Journal of Structural Engineering, 2015, 141(10):4014240-4014250.
[57] Calladine C R. Buckminster Fuller's tensegrity" structures and Clerk Maxwell's rules for the construction of stiff frames[J]. International Journal of Solids and Structures, 1978, 14(2):161-172.
[58] Pellegrino S, Caladine C R. Matrix analysis of statically and kinematically indeterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428.
[59] Chen Y, Feng J, Wu Y. Prestress stability of pin-jointed assemblies using ant colony systems[J]. Mechanics Research Communications, 2012, 41:30-36.
[60] Chen Y, Guest S D, Fowler P W, et al. Two-orbit switch-pitch structures[J]. Journal of the International Association for Shell and Spatial Structures, 2012, 53(3):157-162.
[61] Connelly R. Tensegrity structures:Why are ‘they stable?’[C]//Rigidity Theory and Applications. New York:Kluwer/Plenum Publishers, 1999:47-54.
[62] Guest S D. The stiffness of prestressed frameworks:A unifying approach[J]. International Journal of Solids and Structures, 2006, 43(3/4):842-854.
[63] Zhang J Y, Ohsaki M. Stability conditions for tensegrity structures[J]. International Journal of Solids and Structures, 2007, 44(11/12):3875-3886.
[64] Kebiche K, Kazi-Aoual M N, Motro R. Geometrical nonlinear analysis of tensegrity systems[J]. Engineering Structures, 1999, 21(9):864-876.
[65] Motro R. Tensegrity systems and geodesic domes[J]. International Journal of Space Structures, 1990, 5:341-351.
[66] Murakami H. Static and dynamic analyses of tensegrity structures, part II. quasi-static analysis[J]. International Journal of Solids & Structures, 2001, 38(20):3615-3629.
[67] 赵建英.两级张拉整体结构动力学与运动控制[D].哈尔滨:哈尔滨工业大学, 2017.