Reviews

Research state and key technology analysis of tensegrity robots

  • CUI Zuo ,
  • HE Jingfeng
Expand
  • 1. Department of Aerospace Engineering, Guizhou Institute of Technology, Guiyang 550003, China;
    2. School of Mechatronic Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2020-10-31

  Revised date: 2021-09-10

  Online published: 2022-06-10

Abstract

According to the latest researches of tensegrity robot, the characteristics of tensegrity robot are reviewed comprehensively and briefly, and the developments of typical prototypes are summarized. Furthermore, applications of tensegrity robot are introduced from three aspects of ground movement, space exploration and bionic field. On this basis, the key technologies are illustrated concerning initial configuration design, initial prestress analysis and structure stability judgment, morphology determination under external load, dynamic characteristics, and control methods. As last, technical problems of tensegrity robot to be studied in the future are discussed.

Cite this article

CUI Zuo , HE Jingfeng . Research state and key technology analysis of tensegrity robots[J]. Science & Technology Review, 2022 , 40(7) : 84 -93 . DOI: 10.3981/j.issn.1000-7857.2022.07.009

References

[1] Motro R. Tensegrity structural systems for the future[M]. Oxford:Butterworth-Heinemann, 2006:1-257.
[2] Connelly R, Back A. Mathematics and tensegrity[J]. American Scientist, 1998, 86(2):142-151.
[3] Shibata M, Hirai S. Rolling locomotion of deformable tensegrity structure[J]. Mobile Robotics, 2009, 19(6):479-486.
[4] Caluwaerts K, Despraz J, Iscen A, et al. Design and control of compliant tensegrity robots through simulation and hardware validation[J]. Journal of the Royal Society Interface, 2014, 11(98):1-14.
[5] Caluwaerts K. Design and computational aspects of compliant tensegrity robots[D]. Ghent:Ghent University, 2014:127-158.
[6] Hirai S, Imuta R. Dynamic modeling of tensegrity robots rolling over the ground[C]//The 5th International Conference on Computational Methods (ICCM2014). Cambridge:Scien Tech Publisher, 2014:272-280.
[7] Bruce J. Design, building, and testing of SUPERball:A tensegrity robot to enable space exploration[D]. Santa Cruz:UC Santa Cruz, 2016:33-46.
[8] Sabelhaus A P, Bruce J, Caluwaerts, et al. System design and locomotion of SUPERball, an untethered tensegrity robot[C]//2015 IEEE International Conference on Robotics and Automation (ICRA), Seattle:IEEE Publisher, 2015:2867-2873.
[9] Iscen A, Caluwaerts K, Bruce J, et al. Learning tensegrity locomotion using open-loop control signals and coevolutionary algorithms[J]. Artificial Life, 2015, 21(2):119-140.
[10] Sunspiral V, Gorospe G, Bruce J, et al. Tensegrity based probes for planetary exploration:Entry, descent and landing (EDL) and surface mobility analysis[C]//The 10th International planetary probe workshop (IPPW). San Jose:The Planetary Science Program, 2013:1-13.
[11] Kim K, Agogino A K, Agogino A M. Emergent formfinding for center of mass control of ball-shaped tensegrity robots[C]//International Conference on Autonomous Agents and Multiagent Systems. Istanbul:International Foundation for Autonomous Agents and Multiagent Systems, 2015:1-17.
[12] Kim K, Agogino A K, Toghyan A, et al. Robust learning of tensegrity robot control for locomotion through formfinding[C]//2015 IEEE/RSJ nternational Conference on Intelligent Robots and Systems (IROS). Hamburg:IEEE Publisher, 2015:5824-5831.
[13] Chen L H, Kim K, Tang E, et al. Soft spherical tensegrity robot design using rod-centered actuation and control[J]. Journal of Mechanisms and Robotics, 2017, 9(2):1-9.
[14] Kim K. On the locomotion of spherical tensegrity robots[D]. Berkeley:University of California, 2016:9-22.
[15] Chen L H, Cera B, Zhu E L, et al. Inclined surface locomotion strategies for spherical tensegrity robots[C]//2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver:IEEE Publisher, 2017:4976-4981.
[16] Kinjo T, Aoki T. Realization of jumping motion for walking robot with spherical outer shell[C]//The 4th International Conference on Design Engineering and Science (ICDES 2017). Ghent:IOP science, 2017:242-249.
[17] Rieffel J, Mouret J B. Adaptive and resilient soft tensegrity robots[J]. Soft Robotics, 2018, 5(3):1-12.
[18] Mcbride M K, Martinez A M, Cox L, et al. A readily programmable, fully reversible shape-switching material[J]. Science Advances, 2018, 4(8):1-7.
[19] Chung Y S, Lee J H, Jang J H, et al. Jumping tensegrity robot based on torsionally prestrained SMA springs[J]. ACS Applied Materials & Interfaces, 2019, 11(43):40793-40799.
[20] 李冰玉,阚子云,彭海军,等.基于张拉整体结构的连续型弯曲机械臂设计与研究[J].机器人, 2020, 42(6):686-696.
[21] Lee H, Jang Y, Choe J K, et al. 3D-printed programmable tensegrity for soft robotics[J]. Science Robotics, 2020(5):eaay9024.
[22] Paul C, Francisco J, Valero-Cuevas, et al. Design and control of tensegrity robots for locomotion[J]. IEEE Transactions on Robotics, 2006, 22:944-957.
[23] Hirai S, Koizumi Y, Shibata M, et al. Active shaping of a tensegrity robot via pre-pressure[C]//2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Wollongong:IEEE Publisher, 2013:19-25.
[24] Rovira A G, Tur J M M. Control and simulation of a tensegrity-based mobile robot[J]. Robotics and Autonomous Systems, 2009, 57(5):526-535.
[25] Lu Y, Xu X, Luo Y. Path planning for rolling locomotion of polyhedral tensegrity robots based on dijkstra algorithm[J]. Journal of the International Association for Shell and Spatial Structures, 2019, 60(4):273-286.
[26] Kim K, Agogino A K, Agogino A M. Rolling locomotion of cable-driven soft spherical tensegrity robots[J]. Soft Robot, 2020, 7(3):346-361.
[27] 李团结,车明奎.张拉整体结构外力与形变间关系分析及实验验证[J].西安电子科技大学学报, 2017, 44(1):24-28.
[28] 袁野.球形张拉整体机器人研究[D].哈尔滨:哈尔滨工程大学, 2016.
[29] 解一鸣.球形张拉整体机器人滚动分析与控制研究[D].哈尔滨:哈尔滨工业大学, 2018:58-66.
[30] 杜汶娟.基于张拉整体的可变结构体机器人移动步态研究[D].沈阳:中国科学院沈阳自动化研究所, 2017.
[31] Wei D W, Gao T, Mo X J, et al. Flexible bio-tensegrity manipulator with multi-degree of freedom and variable structure[J]. Chinese Journal of Mechanical Engineering, 2020(33):3.
[32] Wang Z J, Li K, He Q G, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity[J]. Advanced Materials, 2019, 31(7):1-8.
[33] 路达,刘金国,高海波.星球表面着陆巡视一体化探测机器人研究进展[J].航空学报, 2021, 42(1):100-116.
[34] Levin S M. Biotensegrity:The structural basis of life[M]. Scotland:Handspring Publishing, 2019:56-85.
[35] Ingber D E, Tensegrity I. Cell structure and hierarchical systems biology[J]. Journal of Cell Science, 2003, 116(7):1157-1173.
[36] Dawn H S, Sunspiral V, Teodorescu M. Morphological design for controlled tensegrity quadruped locomotion[C]//The 2016 IEEE/RSJ International Conference on Intelligent Robots & Systems. Piscataway:IEEE, 2016:4714-4719.
[37] Sabelhaus A P. Tensegrity spines for quadruped robots[D]. Berkeley:University of California, Berkeley, 2019.
[38] Bliss T, Iwasaki T, Bart-Smith H. Central pattern generator control of a tensegrity swimmer[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18:586-597.
[39] Chen B, Jiang H. Swimming performance of a tensegrity robotic fish[J]. Soft Robot, 2019, 6(4):520-531.
[40] Tantaworrasilp A, Richardson R C. Metamorphic tensegrity structure for pipe inspection[C]//In IOP Conference Series:Materials Science and Engineering. Tokyo:IOP Publishing, 2020, 715(1):012087.
[41] Friesen J, Pogue A, Bewley T, et al. DuCTT:A tensegrity robot for exploring duct systems[C]//2014 IEEE International Conference on Robotics and Automation (ICRA). Piscataway:IEEE Publisher, 2014:4222-4228.
[42] Lee H, Jang Y, Choe J, et al. 3D-printed programmable tensegrity for soft robotics[J]. Science Robotics, 2020, 5(45):eaay9024.
[43] Wen L, Pan F, Ding X. Tensegrity metamaterials for soft robotics[J]. Science Robotics, 2020, 5(45):eabd9158.
[44] Vassart N, Motro R. Multiparametered form-finding method:Application to tensegrity systems[J]. International Journal of Space Structures, 1999, 14(2):147-154.
[45] Zhang L Y, Li Y, Cao Y P, et al. Stiffness matrix-based form-finding method of tensegrity structures[J]. Engineering Structures, 2014, 58(7):36-48.
[46] Feng X, Guo S. A novel method of determining the sole configuration of tensegrity structures[J]. Mechanics Research Communications, 2015, 69:66-78.
[47] Li X, Kong W, He J. A task-space form-finding algorithm for tensegrity robots[J]. IEEE Access, 2020, 8:100578-100585.
[48] Quirant J. Self-stressed systems comprising elements with unilateral rigidity:Self-stress states, mechanisms and tension setting[J]. International Journal of Space Structures, 2007, 22(4):203-214.
[49] Sanchez R, Maurin B, Kazi-Aoual M N, et al. Selfstress states identification and localization in modular tensegrity grids[J]. International Journal of Space Structures, 2007, 22(4):215-224.
[50] Lee S, Lee J. Form-finding of tensegrity structures with arbitrary strut and cable members[J]. International Journal of Mechanical Sciences, 2014, 85(8):55-62.
[51] Chen Y, Feng J, Wu Y. Novel form-finding of tensegrity structures using ant colony systems[J]. Journal of Mechanisms & Robotics, 2012, 4(3):310011-310017.
[52] Li Y, Feng X Q, Cao Y P, et al. A Monte Carlo formfinding method for large scale regular and irregular tensegrity structures[J]. International Journal of Solids & Structures, 2010, 47(14/15):1888-1898.
[53] Cai J, Feng J. Form-finding of tensegrity structures using an optimization method[J]. Engineering Structures, 2015, 104:126-132.
[54] Connelly R, Back A. Mathematics and tensegrity[J]. American Scientist, 1998, 86(2):142-151.
[55] Sultan C, Corless M, Skelton R E. The prestressability problem of tensegrity structures:Some analytical solutions[J]. International Journal of Solids and Structures, 2001, 38(30/31):5223-5252.
[56] Chen Y, Feng J, Ma R, et al. Efficient symmetry method for calculating integral prestress modes of statically indeterminate cable-strut structures[J]. Journal of Structural Engineering, 2015, 141(10):4014240-4014250.
[57] Calladine C R. Buckminster Fuller's tensegrity" structures and Clerk Maxwell's rules for the construction of stiff frames[J]. International Journal of Solids and Structures, 1978, 14(2):161-172.
[58] Pellegrino S, Caladine C R. Matrix analysis of statically and kinematically indeterminate frameworks[J]. International Journal of Solids and Structures, 1986, 22(4):409-428.
[59] Chen Y, Feng J, Wu Y. Prestress stability of pin-jointed assemblies using ant colony systems[J]. Mechanics Research Communications, 2012, 41:30-36.
[60] Chen Y, Guest S D, Fowler P W, et al. Two-orbit switch-pitch structures[J]. Journal of the International Association for Shell and Spatial Structures, 2012, 53(3):157-162.
[61] Connelly R. Tensegrity structures:Why are ‘they stable?’[C]//Rigidity Theory and Applications. New York:Kluwer/Plenum Publishers, 1999:47-54.
[62] Guest S D. The stiffness of prestressed frameworks:A unifying approach[J]. International Journal of Solids and Structures, 2006, 43(3/4):842-854.
[63] Zhang J Y, Ohsaki M. Stability conditions for tensegrity structures[J]. International Journal of Solids and Structures, 2007, 44(11/12):3875-3886.
[64] Kebiche K, Kazi-Aoual M N, Motro R. Geometrical nonlinear analysis of tensegrity systems[J]. Engineering Structures, 1999, 21(9):864-876.
[65] Motro R. Tensegrity systems and geodesic domes[J]. International Journal of Space Structures, 1990, 5:341-351.
[66] Murakami H. Static and dynamic analyses of tensegrity structures, part II. quasi-static analysis[J]. International Journal of Solids & Structures, 2001, 38(20):3615-3629.
[67] 赵建英.两级张拉整体结构动力学与运动控制[D].哈尔滨:哈尔滨工业大学, 2017.
Outlines

/