Exclusive:Sustainable development strategy of rare earth resources

Material flow analysis of rare earth elements: A comprehensive review

  • CHEN Wei ,
  • WANG Peng ,
  • ZHAO Shen ,
  • CHEN Weiqiang
Expand
  • 1. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Life Sciences College of Fujian Agriculture and Forestry University, Fuzhou 350002, China;
    4. Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China;
    5. Jiangxi University of Science and Technology, Faculty of Materials Metallurgy and Chemistry, Ganzhou 341000, China

Received date: 2021-05-15

  Revised date: 2022-01-31

  Online published: 2022-06-10

Abstract

Rare earth (RE) resources become increasingly critical for emerging and low-carbon technologies. With the rapid development of the global pattern of the rare earth production, consumption and trade, the basic significance of the studies of the flow of the rare earth materials is increasingly recognized at home and abroad in promoting the security of the RE resource supply and the sustainable development of the RE industry, with a great number of papers on the material flow analysis (MFA) focusing on the rare earth elements. This paper firstly reviews the related literature on the origin and the evolution of the REMFA, followed by an in-depth analysis of the limitations of the essential data, the quantitative model and the demand orientation. The following suggestions are made:(1) integrating the data on the RE resource and environment and developing a data platform for the rare earth industry; (2) developing a rare earth quantitative model including a supply-side module consisting of the domestic and foreign virgin and recycled minerals as well as a demand-side module coupling with the industrial revolution and resource; (3) enriching the researches embodying the environmental flow, the value stream and the trade flow of the rare earth elements, to support the high-quality development of the rare earth industry in China.

Cite this article

CHEN Wei , WANG Peng , ZHAO Shen , CHEN Weiqiang . Material flow analysis of rare earth elements: A comprehensive review[J]. Science & Technology Review, 2022 , 40(8) : 14 -26 . DOI: 10.3981/j.issn.1000-7857.2022.08.002

References

[1] 苏文清.中国稀土产业经济分析与政策研究[M].北京:中国财政经济出版社, 2009.
[2] 中国科学院科技战略咨询研究院.日本《绿色增长战略》提出2050碳中和发展路线图[EB/OL].(2021-03-22)[2021-05-01].http://www.casisd.cn/zkcg/ydkb/kjqykb/2021kjqykb/202102/202103/t20210322_5981073.html.
[3] European Commission.European climate law[EB/OL].(2021-03-22)[2021-05-01].https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en.
[4] 腾讯网.拜登新政:2035美国无碳发电, 2050实现碳中和[EB/OL].(2021-01-26)[2021-05-01].https://new.qq.com/omn/20210126/20210126A02JTC00.html.
[5] Graedel T E, Harper E M, Nassar N T, et al.Criticality of metals and metalloids[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14):4257-4262.
[6] 中华人民共和国国务院新闻办公室.中国的稀土状况与政策[EB/OL].(2012-06-20)[2021-05-01].http://www.gov.cn/zhengce/2012-06/20/content_2618561.htm.
[7] United States Geological Survey.Geological survey mineral commodity summaries 2020[R].Reston:US Geological Survey, 2021.
[8] European Commission.Critical minerals for the EU economy:Foresight to 2030[R].Brussels:EU, 2013.
[9] European Commission.Study on the EU's list of critical raw materials-Final report (2020)[R].Brussels:EU, 2020.
[10] 白丽娜,隋文力,林忠.白云鄂博矿在稀土和钢铁生产中放射性对周围环境的影响[J].稀土, 2004(4):75-77.
[11] 李永绣,张玲,周新木.南方离子型稀土的资源和环境保护性开采模式[J].稀土, 2010, 31(2):80-85.
[12] 邹国良,吴一丁,蔡嗣经.离子型稀土矿浸取工艺对资源、环境的影响[J].有色金属科学与工程, 2014, 5(2):100-106.
[13] 高志强,周启星.稀土矿露天开采过程的污染及对资源和生态环境的影响[J].生态学杂志, 2011, 30(12):2915-2922.
[14] 郭咏梅,杨丽,张文灿.稀土不稀重在创新应用[J].稀土信息, 2020(7):10-18.
[15] 宋文飞,李国平,韩先锋.稀土定价权缺失、理论机理及制度解释[J].中国工业经济, 2011(10):46-55.
[16] 周代数,李小芬,王胜光.国际定价权视角下的中国稀土产业发展研究[J].工业技术经济, 2011, 30(2):73-77.
[17] 刘刚.中国大宗商品定价权缺失问题探析——以国际市场铁矿石与稀土定价为例[J].价格理论与实践, 2009(11):25-26.
[18] 张丹琳.当前稀土资源现状与供需形势分析[J].国土资源情报, 2020(5):37-41.
[19] Frosch R A, GallopouloS N E.Strategies for manufacturing[J].Scientific American, 1989, 261(3):144-153.
[20] Graedel T E.Material flow analysis from origin to evolution[J].Environmental Science and Technology, 2019, 53(21):12188-12196.
[21] Graedel T E, van Beers D, Bertram M, et al.Multilevel cycle of anthropogenic copper[J].Environmental Science and Technology, 2004, 38(4):1242-1252.
[22] 沈镭,刘晓洁.资源流研究的理论与方法探析[J].资源科学, 2006, 28(3):9-16.
[23] 刘刚.推进物质流和社会经济代谢研究,助力实现联合国可持续发展目标[J].中国科学院院刊, 2018, 33(1):30-39.
[24] 陆钟武,岳强.物质流分析的两种方法及应用[J].有色金属再生与利用, 2006(2):27-28.
[25] Wang T, Müller D B, Graedel T E.Forging the anthropogenic iron cycle[J].Environmental Science and Technology, 2007, 41(14):5120-5129.
[26] Wang P, Ryberg M, Yang Y, et al.Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts[J].Nature Communications, 2021, 12(1):1-11.
[27] Chen W-Q, Graedel T E.Dynamic analysis of aluminum stocks and flows in the United States:1900-2009[J].Ecological Economics, 2012, 81:92-102.
[28] Johnson J, Schewel L, Graedel T E.The contemporary anthropogenic chromium cycle[J].Environmental Science and Technology, 2006, 40(22):7060-7069.
[29] Mao J S, Dong J, GraedeL T E.The multilevel cycle of anthropogenic lead.I.Methodology[J].Resources, conservation and recycling, 2008, 52(8/9):1058-1064.
[30] Mao J S, Dong J, Graedel T E.The multilevel cycle of anthropogenic lead.II.Results and discussion[J].Resources, conservation and recycling, 2008, 52(8/9):1050-1057.
[31] Graedel T E, van Beers D, Bertram M, et al.The multilevel cycle of anthropogenic zinc[J].Journal of Industrial Ecology, 2005, 9(3):67-90.
[32] Chen W-Q, Graedel T E.Anthropogenic cycles of the elements:A critical review[J].Environmental Science and Technology, 2012, 46(16):8574-8586.
[33] Center for Industrial Ecology.Stocks and flows project (STAF)[EB/OL].[2021-05-01].https://cie.research.yale.edu/research/stocks-and-flows-project-staf.
[34] Nansai K, Nakajima K, Kagawa S, et al.Global flows of critical metals necessary for low-carbon technologies:The case of neodymium, cobalt, and platinum[J].Environmental Science and Technology, 2014, 48(3):1391-1400.
[35] Du X, Graedel T E.Uncovering the global life cycles of the rare earth elements[J].Scientific Reports, 2011, 1:1-5.
[36] Du X, Graedel T E.Global in-use stocks of the rare earth elements:A first estimate[J].Environmental Science and Technology, 2011, 45(9):4096-4101.
[37] Wang P, Li W, Kara S.Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages[J].Journal of Cleaner Production, 2018, 174:1492-1502.
[38] Alonso E, Sherman A M, Wallington T J, et al.Evaluating rare earth element availability:A case with revolutionary demand from clean technologies[J].Environmental Science and Technology, 2012, 46(6):3406-3414.
[39] Zimmermann T.Uncovering the fate of critical metals:Tracking dissipative losses along the product life cycle[J].Journal of Industrial Ecology, 2017, 21(5):1198-1211.
[40] Sprecher B, Daigo I, Murakami S, et al.Framework for resilience in material supply chains, with a case study from the 2010 rare earth crisis[J].Environmental Science and Technology, 2015, 49(11):6740-6750.
[41] Peiró L T, Méndez G V, Ayres r U.Material flow analysis of scarce metals:Sources, functions, end-uses and aspects for future supply[J].Environmental Science and Technology, 2013, 47(6):2939-2947.
[42] Sommer P, Rotter V S, Ueberschaar M.Battery related cobalt and REE flows in WEEE treatment[J].Waste Management, 2015, 45:298-305.
[43] Qiu Y, Suh S.Economic feasibility of recycling rare earth oxides from end-of-life lighting technologies[J].Resources, Conservation and Recycling, 2019, 150:104432.
[44] Pavel C C, Lacal-Arántegui R, MarmieR A, et al.Substitution strategies for reducing the use of rare earths in wind turbines[J].Resources Policy, 2017, 52:349-357.
[45] Rademaker J H, Kleijn R, Yang Y.Recycling as a strategy against rare earth element criticality:A systemic evaluation of the potential yield of Nd-Fe-B magnet recycling[J].Environmental Science and Technology, 2013, 47(18):10129-10136.
[46] Schulze R, Buchert M.Estimates of global REE recycling potentials from Nd-Fe-B magnet material[J].Resources, Conservation and Recycling, 2016, 113:12-27.
[47] Sabbaghi M, Cade W, Olson W, et al.The global flow of hard disk drives:Quantifying the concept of value leakage in e-waste recovery systems[J].Journal of Industrial Ecology, 2019, 23(3):560-573.
[48] Du X, GraedeL T E.Uncovering the end uses of the rare earth elements[J].Science of the Total Environment, 2013, 461/462:781-784.
[49] Li J, Peng K, Wang P, et al.Critical rare-earth elements mismatch global wind-power ambitions[J].One Earth, 2020, 3(1):116-125.
[50] Geng J X, Hao H, Sun X, et al.Static material flow analysis of neodymium in China[J].Journal of Industrial Ecology, 2020, 25(1):114-124.
[51] Wang Q C, Wang P, Qiu Y, et al.Byproduct surplus:Lighting the depreciative europium in China's rare earth boom[J].Environmental Science and Technology, 2020, 54(22):14686-14693.
[52] Mancheri N A, Sprecher B, Bailey G, et al.Effect of Chinese policies on rare earth supply chain resilience[J].Resources, Conservation and Recycling, 2019, 142:101-112.
[53] Elshkaki A.Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications[J].Energy, 2020, 202:117697.
[54] Elshkaki A, Shen L.Energy-material nexus:The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J].Energy, 2019, 180:903-917.
[55] Wang P, Chen L Y, Ge J P, et al.Incorporating critical material cycles into metal-energy nexus of China's 2050 renewable transition[J].Applied Energy, 2019, 253:113612.
[56] Li X Y, Ge J P, Chen W-Q, et al.Scenarios of rare earth elements demand driven by automotive electrification in China:2018-2030[J].Resources, Conservation and Recycling, 2019, 145:322-331.
[57] Qiu C, Gong X Z, Chen W J, et al.Materials flows analysis on the beneficiation and roasting processes of a typical rare earth mineral[J].Materials Science Forum, 2016, 847:352-357.
[58] Nguyen R T, Imholte D D.China's rare earth supply chain:Illegal production, and response to new cerium demand[J].JOM:the Journal of the Minerals, Metals & Materials Society, 2016, 68(7):1948-1956.
[59] Chen W J, Wang Z H, Gong X Z, et al.Substance flow analysis of rare earth lanthanum in China[J].Materials Science Forum, 2017, 898:2455-2463.
[60] Chen W J, Nie Z R, Wang Z H, et al.Substance flow analysis of neodymium based on the generalized entropy in China[J].Resources, Conservation and Recycling, 2018, 133(1):438-443.
[61] Shi W, Daigo I, MAtsuno Y, et al.Substance flow analysis of dysprosium in Japan[J].Journal of the Japan Institute of Metals and Materials, 2010, 2:758-765.
[62] Sekine N, Daigo I, Goto Y.Dynamic substance flow analysis of neodymium and dysprosium associated with neodymium magnets in Japan[J].Journal of Industrial Ecology, 2017, 21(2):356-367.
[63] Seo Y, Morimoto S.Comparison of dysprosium security strategies in Japan for 2010-2030[J].Resources Policy, 2014, 39(1):15-20.
[64] Yano J, Muroi T.Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030[J].Journal of Material Cycles and Waste Management, 2020, 18(4):655-664.
[65] Seo Y, Morimoto S.Domestic Yttrium consumption trends in Japan[J].Journal of Industrial Ecology, 2016, 20(5):1064-1071.
[66] European Commission.Study on data for a raw material system analysis:Roadmap and test of the fully operational MSA for raw materials[R].Brussels:EU, 2015.
[67] Ciacci L, Vassura I, Passarini F.Shedding light on the anthropogenic europium cycle in the EU-28.Marking product turnover and energy progress in the lighting sector[J].Resources, 2018, 7(3):59.
[68] Guyonnet D, Planchon M, Rollat A, et al.Material flow analysis applied to rare earth elements in Europe[J].Journal of Cleaner Production, 2015, 107:215-228.
[69] Rollat A, Guyonnet D, Planchon M, et al.Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon[J].Waste Management, 2016, 49:427-436.
[70] Ciacci L, VassurA I, Cao Z, et al.Recovering the "new twin":Analysis of secondary neodymium sources and recycling potentials in Europe[J].Resources, Conservation and Recycling, 2019, 142:143-152.
[71] Fishman T, Myers R J, Rios O, et al.Implications of emerging vehicle technologies on rare earth supply and demand in the United States[J].Resources, 2018, 7(1):1-15.
[72] Nassar N T, Wilburn D R, Goonan T G.Byproduct metal requirements for U.S.wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J].Applied Energy, 2016, 183:1209-1226.
[73] Swain B, Kang L, Mishra C, et al.Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea[J].Waste Management, 2015, 45:351-360.
[74] Lee I S, Kim J G.Industrial demand and integrated material flow of terbium in Korea[J].International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(2):145-152.
[75] Morf L S, Gloor R, Haag O, et al.Precious metals and rare earth elements in municipal solid waste-Sources and fate in a Swiss incineration plant[J].Waste Management, 2013, 33(3):634-644.
[76] Cao Z, O'Osullivan C, Tan J, et al.Resourcing the fairytale country with wind power:A dynamic material flow analysis[J].Environmental Science and Technology, 2019, 53:11313-11322.
[77] Habib K, Schibye P K, Vestbø A P, et al.Material flow analysis of Nd-Fe-B magnets for Denmark:A comprehensive waste flow sampling and analysis approach[J].Environmental Science and Technology, 2014, 48(20):12229-12237.
[78] U.S.Department of Energy.Critical materials strategy[R].Washington DC:DOE, 2010.
[79] National Science and Technology Council.Assessment of critical minerals:Screening methodology and initial application[R].Washington D.C:National Science and Technology Council, 2017:57.
[80] Nassar N T, Du X, GraedeL T E.Criticality of the rare earth elements[J].Journal of Industrial Ecology, 2015, 19(6):1044-1054.
[81] Trump D J.A federal strategy to ensure secure and reliable supplies of critical minerals[EB/OL].(2017-12-20)[2021-05-01].https://www.federalregister.gov/documents/2017/12/26/2017-27899/a-federal-strategy-to-ensuresecure-and-reliable-supplies-of-critical-minerals.
[82] Trump D J.Executive order on addressing the threat to the domestic supply chain from reliance on critical minerals from foreign adversaries[EB/OL].(2020-10-05)[2021-05-01].https://www.whitehouse.gov/presidentialactions/executive-order-addressing-threat-domestic-supply-chain-reliance-critical-minerals-foreign-adversaries.
[83] Joseph R, Biden J R.Executive order on America's supply chains[EB/OL].(2021-02-24)[2021-05-01].https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains.
[84] European Commission.Report on critical raw materials for the EU:Report of the Ad hoc Working Group on defining critical raw materials[R].Brussels:EU, 2014.
[85] European Commission.Study on the review of the list of critical raw materials[R].Brussels:EU, 2017.
[86] European Commission.Critical raw materials resilience:Charting a path towards greater security and sustainability[R].Brussels:EU, 2020.
[87] Lee J C K, Wen Z.Pathways for greening the supply of rare earth elements in China[J].Nature Sustainability, 2018, 1(10):598-605.
[88] 谷树忠,李维明.实施资源安全战略确保我国国家安全[EB/OL].(2014-04-29)[2021-05-01].http://finance.people.com.cn/n/2014/0429/c1004-24953710.html.
[89] 邱晨辉.国新办发布会回应工信领域热点关切[EB/OL].(2021-03-02)[2021-05-01].https://cnews.chinadaily.com.cn/a/202103/02/WS603decb0a3101e7ce9741be6.html.
[90] 工业和信息化部.工业和信息化部关于印发稀土行业发展规划(2016-2020年)的通知[EB/OL].(2016-10-18)[2021-05-01].http://www.gov.cn/xinwen/2016-10/18/content_5120998.htm.
[91] 工业和信息化部.公开征求对《稀土管理条例(征求意见稿)》的意见[EB/OL].(2021-01-15)[2021-05-01].https://www.miit.gov.cn/gzcy/yjzj/art/2021/art_863f0f1671cf44b28e6ed8cb60eae7f6.html.
Outlines

/