[1] 苏文清.中国稀土产业经济分析与政策研究[M].北京:中国财政经济出版社, 2009.
[2] 中国科学院科技战略咨询研究院.日本《绿色增长战略》提出2050碳中和发展路线图[EB/OL].(2021-03-22)[2021-05-01].http://www.casisd.cn/zkcg/ydkb/kjqykb/2021kjqykb/202102/202103/t20210322_5981073.html.
[3] European Commission.European climate law[EB/OL].(2021-03-22)[2021-05-01].https://ec.europa.eu/clima/eu-action/european-green-deal/european-climate-law_en.
[4] 腾讯网.拜登新政:2035美国无碳发电, 2050实现碳中和[EB/OL].(2021-01-26)[2021-05-01].https://new.qq.com/omn/20210126/20210126A02JTC00.html.
[5] Graedel T E, Harper E M, Nassar N T, et al.Criticality of metals and metalloids[J].Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(14):4257-4262.
[6] 中华人民共和国国务院新闻办公室.中国的稀土状况与政策[EB/OL].(2012-06-20)[2021-05-01].http://www.gov.cn/zhengce/2012-06/20/content_2618561.htm.
[7] United States Geological Survey.Geological survey mineral commodity summaries 2020[R].Reston:US Geological Survey, 2021.
[8] European Commission.Critical minerals for the EU economy:Foresight to 2030[R].Brussels:EU, 2013.
[9] European Commission.Study on the EU's list of critical raw materials-Final report (2020)[R].Brussels:EU, 2020.
[10] 白丽娜,隋文力,林忠.白云鄂博矿在稀土和钢铁生产中放射性对周围环境的影响[J].稀土, 2004(4):75-77.
[11] 李永绣,张玲,周新木.南方离子型稀土的资源和环境保护性开采模式[J].稀土, 2010, 31(2):80-85.
[12] 邹国良,吴一丁,蔡嗣经.离子型稀土矿浸取工艺对资源、环境的影响[J].有色金属科学与工程, 2014, 5(2):100-106.
[13] 高志强,周启星.稀土矿露天开采过程的污染及对资源和生态环境的影响[J].生态学杂志, 2011, 30(12):2915-2922.
[14] 郭咏梅,杨丽,张文灿.稀土不稀重在创新应用[J].稀土信息, 2020(7):10-18.
[15] 宋文飞,李国平,韩先锋.稀土定价权缺失、理论机理及制度解释[J].中国工业经济, 2011(10):46-55.
[16] 周代数,李小芬,王胜光.国际定价权视角下的中国稀土产业发展研究[J].工业技术经济, 2011, 30(2):73-77.
[17] 刘刚.中国大宗商品定价权缺失问题探析——以国际市场铁矿石与稀土定价为例[J].价格理论与实践, 2009(11):25-26.
[18] 张丹琳.当前稀土资源现状与供需形势分析[J].国土资源情报, 2020(5):37-41.
[19] Frosch R A, GallopouloS N E.Strategies for manufacturing[J].Scientific American, 1989, 261(3):144-153.
[20] Graedel T E.Material flow analysis from origin to evolution[J].Environmental Science and Technology, 2019, 53(21):12188-12196.
[21] Graedel T E, van Beers D, Bertram M, et al.Multilevel cycle of anthropogenic copper[J].Environmental Science and Technology, 2004, 38(4):1242-1252.
[22] 沈镭,刘晓洁.资源流研究的理论与方法探析[J].资源科学, 2006, 28(3):9-16.
[23] 刘刚.推进物质流和社会经济代谢研究,助力实现联合国可持续发展目标[J].中国科学院院刊, 2018, 33(1):30-39.
[24] 陆钟武,岳强.物质流分析的两种方法及应用[J].有色金属再生与利用, 2006(2):27-28.
[25] Wang T, Müller D B, Graedel T E.Forging the anthropogenic iron cycle[J].Environmental Science and Technology, 2007, 41(14):5120-5129.
[26] Wang P, Ryberg M, Yang Y, et al.Efficiency stagnation in global steel production urges joint supply-and demand-side mitigation efforts[J].Nature Communications, 2021, 12(1):1-11.
[27] Chen W-Q, Graedel T E.Dynamic analysis of aluminum stocks and flows in the United States:1900-2009[J].Ecological Economics, 2012, 81:92-102.
[28] Johnson J, Schewel L, Graedel T E.The contemporary anthropogenic chromium cycle[J].Environmental Science and Technology, 2006, 40(22):7060-7069.
[29] Mao J S, Dong J, GraedeL T E.The multilevel cycle of anthropogenic lead.I.Methodology[J].Resources, conservation and recycling, 2008, 52(8/9):1058-1064.
[30] Mao J S, Dong J, Graedel T E.The multilevel cycle of anthropogenic lead.II.Results and discussion[J].Resources, conservation and recycling, 2008, 52(8/9):1050-1057.
[31] Graedel T E, van Beers D, Bertram M, et al.The multilevel cycle of anthropogenic zinc[J].Journal of Industrial Ecology, 2005, 9(3):67-90.
[32] Chen W-Q, Graedel T E.Anthropogenic cycles of the elements:A critical review[J].Environmental Science and Technology, 2012, 46(16):8574-8586.
[33] Center for Industrial Ecology.Stocks and flows project (STAF)[EB/OL].[2021-05-01].https://cie.research.yale.edu/research/stocks-and-flows-project-staf.
[34] Nansai K, Nakajima K, Kagawa S, et al.Global flows of critical metals necessary for low-carbon technologies:The case of neodymium, cobalt, and platinum[J].Environmental Science and Technology, 2014, 48(3):1391-1400.
[35] Du X, Graedel T E.Uncovering the global life cycles of the rare earth elements[J].Scientific Reports, 2011, 1:1-5.
[36] Du X, Graedel T E.Global in-use stocks of the rare earth elements:A first estimate[J].Environmental Science and Technology, 2011, 45(9):4096-4101.
[37] Wang P, Li W, Kara S.Dynamic life cycle quantification of metallic elements and their circularity, efficiency, and leakages[J].Journal of Cleaner Production, 2018, 174:1492-1502.
[38] Alonso E, Sherman A M, Wallington T J, et al.Evaluating rare earth element availability:A case with revolutionary demand from clean technologies[J].Environmental Science and Technology, 2012, 46(6):3406-3414.
[39] Zimmermann T.Uncovering the fate of critical metals:Tracking dissipative losses along the product life cycle[J].Journal of Industrial Ecology, 2017, 21(5):1198-1211.
[40] Sprecher B, Daigo I, Murakami S, et al.Framework for resilience in material supply chains, with a case study from the 2010 rare earth crisis[J].Environmental Science and Technology, 2015, 49(11):6740-6750.
[41] Peiró L T, Méndez G V, Ayres r U.Material flow analysis of scarce metals:Sources, functions, end-uses and aspects for future supply[J].Environmental Science and Technology, 2013, 47(6):2939-2947.
[42] Sommer P, Rotter V S, Ueberschaar M.Battery related cobalt and REE flows in WEEE treatment[J].Waste Management, 2015, 45:298-305.
[43] Qiu Y, Suh S.Economic feasibility of recycling rare earth oxides from end-of-life lighting technologies[J].Resources, Conservation and Recycling, 2019, 150:104432.
[44] Pavel C C, Lacal-Arántegui R, MarmieR A, et al.Substitution strategies for reducing the use of rare earths in wind turbines[J].Resources Policy, 2017, 52:349-357.
[45] Rademaker J H, Kleijn R, Yang Y.Recycling as a strategy against rare earth element criticality:A systemic evaluation of the potential yield of Nd-Fe-B magnet recycling[J].Environmental Science and Technology, 2013, 47(18):10129-10136.
[46] Schulze R, Buchert M.Estimates of global REE recycling potentials from Nd-Fe-B magnet material[J].Resources, Conservation and Recycling, 2016, 113:12-27.
[47] Sabbaghi M, Cade W, Olson W, et al.The global flow of hard disk drives:Quantifying the concept of value leakage in e-waste recovery systems[J].Journal of Industrial Ecology, 2019, 23(3):560-573.
[48] Du X, GraedeL T E.Uncovering the end uses of the rare earth elements[J].Science of the Total Environment, 2013, 461/462:781-784.
[49] Li J, Peng K, Wang P, et al.Critical rare-earth elements mismatch global wind-power ambitions[J].One Earth, 2020, 3(1):116-125.
[50] Geng J X, Hao H, Sun X, et al.Static material flow analysis of neodymium in China[J].Journal of Industrial Ecology, 2020, 25(1):114-124.
[51] Wang Q C, Wang P, Qiu Y, et al.Byproduct surplus:Lighting the depreciative europium in China's rare earth boom[J].Environmental Science and Technology, 2020, 54(22):14686-14693.
[52] Mancheri N A, Sprecher B, Bailey G, et al.Effect of Chinese policies on rare earth supply chain resilience[J].Resources, Conservation and Recycling, 2019, 142:101-112.
[53] Elshkaki A.Long-term analysis of critical materials in future vehicles electrification in China and their national and global implications[J].Energy, 2020, 202:117697.
[54] Elshkaki A, Shen L.Energy-material nexus:The impacts of national and international energy scenarios on critical metals use in China up to 2050 and their global implications[J].Energy, 2019, 180:903-917.
[55] Wang P, Chen L Y, Ge J P, et al.Incorporating critical material cycles into metal-energy nexus of China's 2050 renewable transition[J].Applied Energy, 2019, 253:113612.
[56] Li X Y, Ge J P, Chen W-Q, et al.Scenarios of rare earth elements demand driven by automotive electrification in China:2018-2030[J].Resources, Conservation and Recycling, 2019, 145:322-331.
[57] Qiu C, Gong X Z, Chen W J, et al.Materials flows analysis on the beneficiation and roasting processes of a typical rare earth mineral[J].Materials Science Forum, 2016, 847:352-357.
[58] Nguyen R T, Imholte D D.China's rare earth supply chain:Illegal production, and response to new cerium demand[J].JOM:the Journal of the Minerals, Metals & Materials Society, 2016, 68(7):1948-1956.
[59] Chen W J, Wang Z H, Gong X Z, et al.Substance flow analysis of rare earth lanthanum in China[J].Materials Science Forum, 2017, 898:2455-2463.
[60] Chen W J, Nie Z R, Wang Z H, et al.Substance flow analysis of neodymium based on the generalized entropy in China[J].Resources, Conservation and Recycling, 2018, 133(1):438-443.
[61] Shi W, Daigo I, MAtsuno Y, et al.Substance flow analysis of dysprosium in Japan[J].Journal of the Japan Institute of Metals and Materials, 2010, 2:758-765.
[62] Sekine N, Daigo I, Goto Y.Dynamic substance flow analysis of neodymium and dysprosium associated with neodymium magnets in Japan[J].Journal of Industrial Ecology, 2017, 21(2):356-367.
[63] Seo Y, Morimoto S.Comparison of dysprosium security strategies in Japan for 2010-2030[J].Resources Policy, 2014, 39(1):15-20.
[64] Yano J, Muroi T.Rare earth element recovery potentials from end-of-life hybrid electric vehicle components in 2010-2030[J].Journal of Material Cycles and Waste Management, 2020, 18(4):655-664.
[65] Seo Y, Morimoto S.Domestic Yttrium consumption trends in Japan[J].Journal of Industrial Ecology, 2016, 20(5):1064-1071.
[66] European Commission.Study on data for a raw material system analysis:Roadmap and test of the fully operational MSA for raw materials[R].Brussels:EU, 2015.
[67] Ciacci L, Vassura I, Passarini F.Shedding light on the anthropogenic europium cycle in the EU-28.Marking product turnover and energy progress in the lighting sector[J].Resources, 2018, 7(3):59.
[68] Guyonnet D, Planchon M, Rollat A, et al.Material flow analysis applied to rare earth elements in Europe[J].Journal of Cleaner Production, 2015, 107:215-228.
[69] Rollat A, Guyonnet D, Planchon M, et al.Prospective analysis of the flows of certain rare earths in Europe at the 2020 horizon[J].Waste Management, 2016, 49:427-436.
[70] Ciacci L, VassurA I, Cao Z, et al.Recovering the "new twin":Analysis of secondary neodymium sources and recycling potentials in Europe[J].Resources, Conservation and Recycling, 2019, 142:143-152.
[71] Fishman T, Myers R J, Rios O, et al.Implications of emerging vehicle technologies on rare earth supply and demand in the United States[J].Resources, 2018, 7(1):1-15.
[72] Nassar N T, Wilburn D R, Goonan T G.Byproduct metal requirements for U.S.wind and solar photovoltaic electricity generation up to the year 2040 under various Clean Power Plan scenarios[J].Applied Energy, 2016, 183:1209-1226.
[73] Swain B, Kang L, Mishra C, et al.Materials flow analysis of neodymium, status of rare earth metal in the Republic of Korea[J].Waste Management, 2015, 45:351-360.
[74] Lee I S, Kim J G.Industrial demand and integrated material flow of terbium in Korea[J].International Journal of Precision Engineering and Manufacturing-Green Technology, 2014, 1(2):145-152.
[75] Morf L S, Gloor R, Haag O, et al.Precious metals and rare earth elements in municipal solid waste-Sources and fate in a Swiss incineration plant[J].Waste Management, 2013, 33(3):634-644.
[76] Cao Z, O'Osullivan C, Tan J, et al.Resourcing the fairytale country with wind power:A dynamic material flow analysis[J].Environmental Science and Technology, 2019, 53:11313-11322.
[77] Habib K, Schibye P K, Vestbø A P, et al.Material flow analysis of Nd-Fe-B magnets for Denmark:A comprehensive waste flow sampling and analysis approach[J].Environmental Science and Technology, 2014, 48(20):12229-12237.
[78] U.S.Department of Energy.Critical materials strategy[R].Washington DC:DOE, 2010.
[79] National Science and Technology Council.Assessment of critical minerals:Screening methodology and initial application[R].Washington D.C:National Science and Technology Council, 2017:57.
[80] Nassar N T, Du X, GraedeL T E.Criticality of the rare earth elements[J].Journal of Industrial Ecology, 2015, 19(6):1044-1054.
[81] Trump D J.A federal strategy to ensure secure and reliable supplies of critical minerals[EB/OL].(2017-12-20)[2021-05-01].https://www.federalregister.gov/documents/2017/12/26/2017-27899/a-federal-strategy-to-ensuresecure-and-reliable-supplies-of-critical-minerals.
[82] Trump D J.Executive order on addressing the threat to the domestic supply chain from reliance on critical minerals from foreign adversaries[EB/OL].(2020-10-05)[2021-05-01].https://www.whitehouse.gov/presidentialactions/executive-order-addressing-threat-domestic-supply-chain-reliance-critical-minerals-foreign-adversaries.
[83] Joseph R, Biden J R.Executive order on America's supply chains[EB/OL].(2021-02-24)[2021-05-01].https://www.whitehouse.gov/briefing-room/presidential-actions/2021/02/24/executive-order-on-americas-supply-chains.
[84] European Commission.Report on critical raw materials for the EU:Report of the Ad hoc Working Group on defining critical raw materials[R].Brussels:EU, 2014.
[85] European Commission.Study on the review of the list of critical raw materials[R].Brussels:EU, 2017.
[86] European Commission.Critical raw materials resilience:Charting a path towards greater security and sustainability[R].Brussels:EU, 2020.
[87] Lee J C K, Wen Z.Pathways for greening the supply of rare earth elements in China[J].Nature Sustainability, 2018, 1(10):598-605.
[88] 谷树忠,李维明.实施资源安全战略确保我国国家安全[EB/OL].(2014-04-29)[2021-05-01].http://finance.people.com.cn/n/2014/0429/c1004-24953710.html.
[89] 邱晨辉.国新办发布会回应工信领域热点关切[EB/OL].(2021-03-02)[2021-05-01].https://cnews.chinadaily.com.cn/a/202103/02/WS603decb0a3101e7ce9741be6.html.
[90] 工业和信息化部.工业和信息化部关于印发稀土行业发展规划(2016-2020年)的通知[EB/OL].(2016-10-18)[2021-05-01].http://www.gov.cn/xinwen/2016-10/18/content_5120998.htm.
[91] 工业和信息化部.公开征求对《稀土管理条例(征求意见稿)》的意见[EB/OL].(2021-01-15)[2021-05-01].https://www.miit.gov.cn/gzcy/yjzj/art/2021/art_863f0f1671cf44b28e6ed8cb60eae7f6.html.