[1] Zhan W C, Guo Y, Gong X Q, et al.Current status and perspectives of rare earth catalytic materials and catalysis[J].Chinese Journal of Catalysis, 2014, 35(8):1238-1250.
[2] 叶代启,刘锐源,田俊泰.我国挥发性有机物排放量变化趋势及政策研究[J].环境保护, 2020, 48(15):23-26.
[3] Liu L Z, Li J X, Zhang H B, et al.In situ fabrication of highly active γ-MnO2/SmMnO3 catalyst for deep catalytic oxidation of gaseous benzene, ethylbenzene, toluene, and o-xylene[J].Journal of Hazardous Materials, 2019, 362:178-186.
[4] Huang H B, Xu Y, Feng Q Y, et al.Low temperature catalytic oxidation of volatile organic compounds:A review[J].Catalysis Science & Technology, 2015, 5(5):2649-2669.
[5] Heynderickx M P, Thybaut J W, Poelman H, et al.Kinetic modeling of the total oxidation of propane over CuOCeO 2/γ-Al2O3[J].Applied Catalysis B:Environmental, 2010, 95(1/2):26-38.
[6] Qiu Y N, Ye N, Situ D N, et al.Study of catalytic combustion of chlorobenzene and temperature programmed reactions over CrCeO x/AlFe pillared clay catalysts[J].Materials, 2019, 12(5):728.
[7] Dou B J, Li S M, Liu D L, et al.Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO 2 catalysts[J].RSC Advances, 2016, 6(59):53852-53859.
[8] Carabineiro S A C, Chen X, Konsolakis M, et al.Catalytic oxidation of toluene on Ce-Co and La-Co mixed oxides synthesized by exotemplating and evaporation methods[J].Catalysis Today, 2015, 244:161-171.
[9] Gómez D M, Galvita V V, Gatica J M, et al.TAP study of toluene total oxidation over a Co 3O4/La-CeO2 catalyst with an application as a washcoat of cordierite honeycomb monoliths[J].Physical Chemistry Chemical Physics, 2014, 16(23):11447-11455.
[10] Jiang Z Y, Jing M Z, Feng X B, et al.Stabilizing platinum atoms on CeO2 oxygen vacancies by metal-support interaction induced interface distortion:Mechanism and application[J].Applied Catalysis B:Environmental, 2020, 278:119304.
[11] Xia S J, Zhang G H, Meng Y, et al.Kinetic and mechanistic analysis for the photodegradation of gaseous formaldehyde by core-shell CeO2@LDHs[J].Applied Catalysis B:Environmental, 2020, 278:119266.
[12] Zhu X B, Zhang S, Yang Y, et al.Enhanced performance for plasma-catalytic oxidation of ethyl acetate over La 1-xCexCoO3+δ catalysts[J].Applied Catalysis B:Environmental, 2017, 213:97-105.
[13] Wang X Q, Wu J L, Wang J L, et al.Methanol plasmacatalytic oxidation over CeO2 catalysts:Effect of ceria morphology and reaction mechanism[J].Chemical Engineering Journal, 2019, 369:233-244.
[14] Guo Y L, Gao Y J Li X, et al.Catalytic benzene oxidation by biogenic Pd nanoparticles over 3D-ordered mesoporous CeO2[J].Chemical Engineering Journal, 2019, 362:41-52.
[15] Qiu K Q, Yang L X, Lin J M, et al.Historical industrial emissions of non-methane volatile organic compounds in China for the period of 1980-2010[J].Atmospheric Environment, 2014, 86:102-112.
[16] Trovarelli A, Llorca J.Ceria catalysts at nanoscale:How do crystal shapes shape catalysis?[J].ACS Catalysis, 2017, 7(7):4716-4735.
[17] Feng Z T, Ren Q M, Peng R S, et al.Effect of CeO2 morphologies on toluene catalytic combustion[J].Catalysis Today, 2019, 332:177-182.
[18] Akram S, Wang Z, Chen L, et al.Low-temperature efficient degradation of ethyl acetate catalyzed by latticedoped CeO2-CoOx nanocomposites[J].Catalysis Communications, 2016, 73:123-127.
[19] Li H J, Qi G, Zhang X, et al.Low-temperature oxidation of ethanol over a Mn 0.6Ce0.4O2 mixed oxide[J].Applied Catalysis B:Environmental, 2011, 103(1/2):54-61.
[20] Huang Y C, Li H B, Balogun M S, et al.Three-dimensional TiO 2/CeO2 nanowire composite for efficient formaldehyde oxidation at low temperature[J].RSC Advances, 2015, 5(10):7729-7733.
[21] Peng R S, Sun X B, Li S J, et al.Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene[J].Chemical Engineering Journal, 2016, 306:1234-1246.
[22] Peng R S, Li S J, Sun X B, et al.Size effect of Pt nanoparticles on the catalytic oxidation of toluene over Pt/CeO2 catalysts[J].Applied Catalysis B:Environmental, 2018, 220:462-470.
[23] Alifanti M, Florea M, Pârvulescu V.Ceria-based oxides as supports for LaCoO3 perovskite; catalysts for total oxidation of VOC[J].Applied Catalysis B:Environmental, 2007, 70(1/2/3/4):400-405.
[24] Zhang C H, Wang C, Gil S, et al.Catalytic oxidation of 1,2-dichloropropane over supported LaMnO oxides catalysts[J].Applied Catalysis B:Environmental, 2017, 201:552-560.
[25] Álvarez-Galván M C, de la Peña O'Shea V A, Arzamendi G, et al.Methyl ethyl ketone combustion over Latransition metal (Cr, Co, Ni, Mn) perovskites[J].Applied Catalysis B:Environmental, 2009, 92(3/4):445-453.
[26] Li J J, Yu E Q, Cai S C, et al.Noble metal free, CeO2/LaMnO 3 hybrid achieving efficient photo-thermal catalytic decomposition of volatile organic compounds under IR light[J].Applied Catalysis B:Environmental, 2019, 240:141-152.
[27] Jing Y, Cai Z X, Liu C, et al.Promotional effect of La in the three-way catalysis of La-loaded Al2O3-supported Pd catalysts (Pd/La/Al2O3)[J].ACS Catalysis, 2019, 10(2):1010-1023.
[28] Wang T, Zhou R X.Oxygen mobility and microstructure properties-redox performance relationship of Rh/(Ce, Zr, La) O2 catalysts[J].Environmental Pollution, 2020, 258:113782.
[29] Liu J, Wang T, Cheng J, et al.Distribution of organic compounds in coal-fired power plant emissions[J].Energy & Fuels, 2019, 33(6):5430-5437.
[30] Chen L, Liao Y F, Xin S R, et al.Simultaneous removal of NO and volatile organic compounds (VOCs) by Ce/Mo doping-modified selective catalytic reduction (SCR) catalysts in denitrification zone of coal-fired flue gas[J].Fuel, 2020, 262:116485.
[31] Lu C Q, Deng R R, Xu R D, et al.Design of hybrid oxygen carriers with CeO2 particles on MnCo2O4 microspheres for chemical looping combustion[J].Chemical Engineering Journal, 2021, 404:126554.
[32] Zhang X Y, House S D, Tang Y, et al.Complete oxidation of methane on NiO nanoclusters supported on CeO2 nanorods through synergistic effect[J].ACS Sustainable Chemistry & Engineering, 2018, 6(5):6467-6477.
[33] de Rivas B, López-Fonseca R, González-Velasco J R, et al.On the mechanism of the catalytic destruction of 1, 2-dichloroethane over Ce/Zr mixed oxide catalysts[J].Journal of Molecular Catalysis A:Chemical, 2007, 278(1/2):181-188.
[34] 许子飏,莫胜鹏,付名利,等.稀土材料在挥发性有机废气降解中的应用及发展趋势[J].环境工程, 2020, 38(1):1-12.