Special to S&T Review

A historical investigation of the particle physics development

  • QIAO Xiaofei ,
  • LU Haoming
Expand
  • Institute for History of Science and Technology, Shanxi University, Taiyuan 030006, China

Received date: 2022-02-27

  Revised date: 2022-04-01

  Online published: 2022-07-20

Abstract

Particle physics is an important branch of modern physics, as well as one of the landmark achievements of human civilization. From 1955 to 1995, about one-third of the Nobel Prizes in Physics were awarded to the theoretical or experimental research related to particle physics; studying its history can help to truly understand the discipline. Chronologically, the development of particle physics can be roughly divided into four stages:the preliminary exploration period, theoretical maturity period, experimental verification period and continuous improvement period. The initial exploration period (1930-1951) was the initial stage of particle physics, the discipline gradually moving from nuclear physics to independence. The theoretical maturity stage (1952-1967) was the construction stage of the theoretical system of particle physics, paving the way for further experimental verification. The experimental verification period (1968-1985) was the preliminary completion stage of particle physics, and the theoretical system represented by the Standard Model was fully verified. The continued perfection period (1986-present) is the stage of continued development of particle physics, mankind being closer than ever to a new physics beyond the standard model.

Cite this article

QIAO Xiaofei , LU Haoming . A historical investigation of the particle physics development[J]. Science & Technology Review, 2022 , 40(9) : 6 -13 . DOI: 10.3981/j.issn.1000-7857.2022.09.001

References

[1] Courant E D, Livingston M S, Snyder H S.The strong-focusing synchroton-A new high energy accelerator[J].Physical Review, 1952, 88(5):1190-1196.
[2] Blewett J P.Radial focusing in the linear accelerator[J].Physical Review, 1952, 88(5):1197-1199.
[3] Yang C N, Mills R L.Conservation of isotopic spin and isotopic gauge invariance[J].Physical Review, 1954, 96(1):191-195.
[4] Nambu Y.Quasi-particles and gauge invariance in the theory of superconductivity[J].Physical Review, 1960, 117(3):648-663.
[5] Goldstone J.Field theories with "Superconductor" solutions[J].Il Nuovo Cimento(1955-1965), 1961, 19(1):154-164.
[6] Nambu Y, Jona-Lasinio G.Dynamical model of elementary particles based on an analogy with superconductivity.I[J].Physical Review, 1961, 122(1):345-358.
[7] Higgs P W.Broken symmetries and the masses of gauge bosons[J].Physical Review Letters, 1964, 13(16):508-509.
[8] Englert F, Brout R.Broken symmetry and the mass of gauge vector mesons[J].Physical Review Letters, 1964, 13(9):321-323.
[9] Guralnik G S, Hagen C R, Kibble T W B.Global conservation laws and massless particles[J].Physical Review Letters, 1964, 13(20):585-587.
[10] Gell-Mann M.A schematic model of baryons and mesons[J].Physics Letters, 1964, 8(3):214-215.
[11] 朱洪元, 何祚庥, 汪容, 等.强相互作用粒子结构的相对论性模型[J].原子能, 1966(3):137-150.
[12] 刘连寿, 胡宁, 赵光达, 等.强相互作用粒子的结构模型[J].北京大学学报(自然科学), 1966(2):103-112.
[13] 戴元本.怀念朱洪元先生[C]//朱洪元论文选集.北京:中国科学院高能物理研究所, 2003:321.
[14] Weinberg S.A model of leptons[J].Physical Review Letters, 1967, 19(21):1264-1266.
[15] Goldstone J, Salam A, Weinberg S.Broken symmetries[J].Physical Review, 1962, 127(3):965-970.
[16] Glashow S L.Partial-symmetries of weak interactions[J].Nuclear Physics, 1961, 22(4):579-588.
[17] Hooft G.Renormalization of massless Yang-Mills fields[J].Nuclear Physics:B, 1971, 33(1):173-199.
[18] Glashow S L, Iliopoulos J, Maiani L.Weak interactions with lepton-hadron symmetry[J].Physical Review D, 1970, 2(7):1285-1292.
[19] Gross D J, Wilczek F.Ultraviolet behavior of non-abelian gauge theories[J].Physical Review Letters, 1973, 30(26):1343-1346.
[20] Politzer H D.Reliable perturbative results for strong interactions?[J].Physical Review Letters, 1973, 30(26):1346-1349.
[21] Hasert F J, Faissner H, Krenz W, et al.Search for elastic muon-neutrino electron scattering[J].Physics Letters B, 1973, 46(1):121-124.
[22] Fritzsch H, Gell-Mann M, Leutwyler H.Advantages of the color octet gluon picture[J].Physics Letters B, 1973, 47(4):365-368.
[23] Aubert J J, Becker U, Biggs P J, et al.Experimental observation of a heavy particle J[J].Physical Review Letters, 1974, 33(23):1404-1406.
[24] Augustin J E, Boyarski A M, Breidenbach M, et al.Discovery of a narrow resonance in e+e- annihilation[J].Physical Review Letters, 1974, 33(23):1406-1408.
[25] Kobayashi M, Maskawa T.CP-violation in the renormalizable theory of weak interaction[J].Progress of Theoretical Physics, 1973, 49(2):652-657.
[26] Brandelik R, Braunschweig W, Gather K, et al.Evidence for planar events in e+e- annihilation at high energies[J].Physics Letters B, 1979, 86(2):243-249.
[27] Arnison G, Astbury A, Aubert B, et al.Experimental observation of lepton pairs of invariant mass around 95 GeV/c2 at the CERN SPS collider[J].Physics Letters B, 1983, 126(5):398-410.
[28] Fermilab.Who are the industrial affiliates[N].FermiNews, 1981-05-21(1).
[29] Henry Tye S H.Supplement to the "Giant Collider in China" debate:Background on Prof.C.N.Yang's opinion on high-energy physics[J].International Journal of Modern Physics A, 2016, 31(30):1630056.
[30] 杨振宁.杨振宁国科大演讲全文:辩论对年轻人有很大的好处——杨振宁在中国科学院大学谈学习与研究经历[EB/OL].(2019-07-28)[2022-04-07].https://news.ucas.ac.cn/index.php/cmjj/493784.
[31] Lees J P, Poireau V, Tisserand V, et al.Evidence for an excess of B→D(*)τ-vτ decays[J].Physical Review Letters, 2012, 109(10):101802.
[32] Huschle M, Kuhr T, Heck M, et al.Measurement of the branching ratio of B→D(*)τ-vτ relative to B→D(*)l-vl decays with hadronic tagging at Belle[J].Physical Review D, 2015, 92(7):072014.
[33] Aaij R, Adeva B, Adinolfi M, et al.Measurement of the ratio of branching fractions B(B0→ D* +τ-vτ)/B(B0→ D* +μ-vμ)[J].Physical Review Letters, 2015, 115(11):111803.
[34] Bennett G W, Bousquet B, Brown H N, et al.Final report of the E821 muon anomalous magnetic moment measurement at BNL[J].Physical Review D, 2006, 73(7):072003.
[35] Abi B, Albahri T, Al-Kilani S, et al.Measurement of the positive muon anomalous magnetic moment to 0.46 ppm[J].Physical Review Letters, 2021, 126(14):141801.
[36] Fukuda Y, Hayakawa T, Ichihara E, et al.Evidence for oscillation of atmospheric neutrinos[J].Physical Review Letters, 1998, 81(8):1562-1567.
[37] Ahmad Q R, Allen R C, Andersen T C, et al.Measurement of the rate of νe +d→p+p+e-interactions produced by 8B solar neutrinos at the sudbury neutrino observatory[J].Physical Review Letters, 2001, 87(7):071301.
[38] Bai J Z, Bardon O, Becker-Szendy R A, et al.Measurement of the mass of the τ lepton[J].Physical Review D, 1996, 53(1):20-34.
[39] An F P, Bai J Z, Balantekin A B, et al.Observation of electron-antineutrino disappearance at Daya Bay[J].Physical Review Letters, 2012, 108(17):171803.
[40] Cao Z, Aharonian F A, An Q, et al.Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12γ-ray Galactic sources[J].Nature, 2021, 594(7861):33-36.
[41] Ablikim M, Achasov M N, Albayrak O, et al.Observation of a charged charmoniumlike structure Zc(4020) and search for the Z c(3900) in e+e- →π+π-hc[J].Physical Review letters, 2013, 111(24):242001.
[42] Aaij R, Adeva B, Adinolfi M, et al.Observation of J/ψp resonances consistent with pentaquark states in Λb0→J/ψK-p decays[J].Physical Review Letters, 2015, 115(7):072001.
[43] Aaij R, Beteta C A, Adeva B, et al.Observation of a narrow pentaquark state, Pc(4312) +, and of the two-peak structure of the P c(4450) +[J].Physical review letters, 2019, 122(22):222001.
[44] Aaltonen T, Amerio S, Amidei D, et al.High-precision measurement of the W boson mass with the CDF II detector[J].Science, 2022, 376(6589):170-176.
[45] Wood C.Newly measured particle seems heavy enough to break known physics[EB/OL].(2022-04-07)[2022-04-13].https://www.quantamagazine.org/fermilab-saysparticle-is-heavy-enough-to-break-the-standard-model-20220407.
Outlines

/