Scientific and Technological Innovation Build a New Development Paradigm

Electron beam lithography system: Progress and outlook

  • LIANG Huikang ,
  • DUAN Huigao
Expand
  • 1. College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China;
    2. Guangdong-Hong Kong-Macao Greater Bay Area Innovation Research Institute, Hunan University, Guangzhou 511300, China

Received date: 2022-05-22

  Revised date: 2022-06-10

  Online published: 2022-08-05

Abstract

Electron beam lithography plays an irreplaceable role in applications such as high precision mask manufacturing, prototype device research and development, small volume production and fundamental scientific research. So breakthrough in advanced domestic electron beam lithography system is an urgent task in the context of foreign embargo. In this review, we introduce the development process of electron beam lithography systems, list the main manufacturers and latest system parameters of three most popular kinds of system in scientific research and industry, and summarize the progress of electron beam lithography system in China. In comparison with the technical parameters of foreign electron beam lithography systems, the key issues that need to be solved in domestic development are summarized. Among them, the challenges of realizing advanced domestic Gaussian electron beam lithography system are emphatically described, including thermal field emission electron gun, high acceleration voltage, high frequency pattern generator, high precision laser interferometer detection technology, and high precision electron beam deflection compensation technology. This review may provide a technical route reference for advanced domestic electron beam lithography system.

Cite this article

LIANG Huikang , DUAN Huigao . Electron beam lithography system: Progress and outlook[J]. Science & Technology Review, 2022 , 40(11) : 33 -44 . DOI: 10.3981/j.issn.1000-7857.2022.11.004

References

[1] Lin B J. Future of multiple-e-beam direct-write systems[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(3):033011.
[2] IEEE. International roadmap for devices and systems 2021 update[EB/OL].(2021-10-05)[2022-05-03]. https://irds.ieee.org/images/files/pdf/2021/2021IRDS_ES.pdf.
[3] Zhou Y, Qin Z, Liang Z Z, et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime[J]. Light:Science&Applications, 2021, 10(1):138.
[4] Ritter M F, Fuhrer A, Haxell D Z, et al. A superconducting switch actuated by injection of high-energy electrons[J]. Nature Communications, 2021, 12:1266.
[5] Kanne T, Olsteins D, Marnauza M, et al. Double nanowires for hybrid quantum devices[J]. Advanced Functional Materials, 2022, 32(9):2107926.
[6] Duan H G, Fernández-Domínguez A I, Bosman M, et al. Nanoplasmonics:Classical down to the nanometer scale[J]. Nano Letters, 2012, 12(3):1683-1689.
[7] Kumar K, Duan H G, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9):557-561.
[8] Hu Y Q, Ou X N, Zeng T B, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Letters, 2021, 21(11):4554-4562.
[9] Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1:16021.
[10] Chen Q, Liu Z W. Fabrication and applications of solidstate nanopores[J]. Sensors, 2019, 19(8):1886.
[11] Keerthi A, Goutham S, You Y, et al. Water friction in nanofluidic channels made from two-dimensional crystals[J]. Nature Communications, 2021, 12(1):3092.
[12] Liu L T, Kong L A, Li Q Y, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS 2 vertical transistors[J]. Nature Electronics, 2021, 4(5):342-347.
[13] Buck D A, Shoulder K R. An approach to microminiature printed systems[C]//Papers and Discussions Presented at the December 3-5, 1958, Eastern Joint Computer Conference:Modern Computers:Objectives, Designs, Applications on XX-AIEE-ACM-IRE'58(Eastern). New York:ACM Press, 1958:55-59.
[14] Möllenstedt G, Speidel R. Elektronenoptischer mikroschreiber unter elektronenmikroskopischer arbeitskontrolle[J]. Physik Journal, 1960, 16(4):192-198.
[15] Ballantyne J P. Mask fabrication by electron-beam lithography[M]//Electron-Beam Technology in Microelectronic Fabrication. Amsterdam:Elsevier, 1980:259-307.
[16] Pfeiffer H C. Recent advances in electron-beam lithography for the high-volume production of VLSI devices[J]. IEEE Transactions on Electron Devices, 1979, 26(4):663-674.
[17] Berger S D, Gibson J M. New approach to projectionelectron lithography with demonstrated 0.1μm linewidth[J]. Applied Physics Letters, 1990, 57(2):153-155.
[18] Dhaliwal R S, Enichen W A, Golladay S D, et al. PREVAIL-electron projection technology approach for nextgeneration lithography[J]. IBM Journal of Research and Development, 2001, 45(5):615-638.
[19] Raith. High-resolution lithography with automation, throughput, and reliability[EB/OL].[2022-05-03]. https://raith.com/product/ebpg-plus/#info.
[20] Raith. Raith China Co., Ltd.[EB/OL].[2022-05-03]. https://expo.semi.org/china2020/public/eBooth.aspx?BoothID=476409&Task=Products.
[21] JEOL. JBX-9500FS电子束光刻系统[EB/OL].[2022-05-03]. https://www.jeol.com.cn/product/detail/229.
[22] Elionix. ELS-BODEN electron beam lithography system[EB/OL].[2022-05-03]. https://www.elionix.co.jp/english/products/els_boden.html.
[23] Crestec. CABL-UH (130kV) series[EB/OL].[2022-05-03]. http://www.crestec8.co.jp/index_ch/business_ch/copy_electron_ch.html#cabl130.
[24] 欣源科技北京有限公司. CRESTEC电子束直写[EB/OL].[2022-05-03]. http://www.globalimporter.net/cdetail_1966_7993984.html.
[25] Nanobeam. NanoBeam nB5[EB/OL].[2022-05-03]. http://www.nanobeam.co.uk/index.php?option=com_content&view=article&id=26&Itemid=48.
[26] 西北工业大学分析测试中心.电子束曝光系统[EB/OL].[2022-05-03]. https://atc.nwpu.edu.cn/info/1082/1127.htm.
[27] Nanobeam. nB5 electron beam lithography system[EB/OL].[2022-05-03]. https://www.tesscorn-nanoscience.com/wp-content/uploads/2017/02/nB5.pdf.
[28] Takemura Y. Will the multibeam era arrive?[EB/OL].[2022-05-03]. https://research-doc.credit-suisse.com/docView?language=ENG&format=PDF&sourceid=emcsplus&document_id=1066162281&serialid=CZePFAdNiSesJNpcbKcB3Uwj%2FHV4laTh9S45%2BV0OgMc%3D&cspId=null.
[29] Matsui H, Iwasaki K, Nakayamada N, et al. Electron Beam Mask Writer EBM-9500PLUS for logic 7nm+node generation[EB/OL].[2022-06-12]. http://www.nuflare.co.jp/english/products/beam/pdf/SPIE_Poster9.5kP_final.pdf.
[30] Pang L Y, Russell E V, Baggenstoss B, et al. Enabling faster VSB writing of 193i curvilinear ILT masks that improve wafer process windows for advanced memory applications[C]//SPIE Photomask Technology+EUV Lithography. Proc SPIE 11518, Photomask Technology 2020. 2020, 11518:128-145.
[31] Matsui H, Kamikubo T, Nakahashi S, et al. Electron beam mask writer EBM-9500 for logic 7nm node generation[C]//SPIE Photomask Technology. Proc SPIE 9985, Photomask Technology 2016, San Jose, California, USA. 2016, 9985:20-29.
[32] Nakayamada N, Kamikubo T, Anze H, et al. Advancing the charging effect correction with time-dependent discharging model[C]//Proc SPIE 8081, Photomask and Next-Generation Lithography Mask Technology XVIII. 2011, 8081:55-63.
[33] Nakayamada N, Wake S, Kamikubo T, et al. Modeling of charging effect and its correction by EB mask writer EBM-6000[C]//Proc SPIE 7028, Photomask and NextGeneration Lithography Mask Technology XV. 2008, 7028:106-117.
[34] Komagata T, Hasegawa T, Goto K, et al. Evaluation of a next generation EB mask writer for hp 32nm lithography[C]//Proc SPIE 7748, Photomask and Next-Generation Lithography Mask Technology XVII. 2010, 7748:155-164.[
[35] JEOL. JBX-3200MV电子束光刻系统[EB/OL].[2022-05-03]. https://www.jeol.com.cn/product/detail/230.
[36] Nuflare. EB mask writer EBM-9500[EB/OL].[2022-05-03]. http://www.nuflare.co.jp/english/products/beam/.
[37] Iijima T, Nakahashi S, Iikubo R, et al. Electron beam mask writer EBM-8000P for high throughput mask production[C]//SPIE Advanced Lithography. Proc SPIE 11324, Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, San Jose, California, USA. 2020, 11324:194-199.
[38] Advantest.电子束曝光装置[EB/OL].(2013-03-13)[2022-05-03]. https://www3.advantest.com/documents/11348/146022/pdf_F7000_130227_jp.pdf/9e1aa3e1-15b9-4f1e-a10b-ddf1917b6497.
[39] Vistec. Vistec shaped beam technology[EB/OL].(2007-08-21)[2022-05-03]. https://www.yumpu.com/en/document/read/43226968/vistec-shaped-beam-technologyfasimit.
[40] Vistec. Vistec SB3050-2[EB/OL].[2022-05-03]. https://www.vistec-semi.com/products-services/vistec-sb254.
[41] Klein C, Platzgummer E. MBMW-101:World's 1st high-throughput multi-beam mask writer[C]//SPIE Photomask Technology. Proc SPIE 9985, Photomask Technology 2016, San Jose, California, USA. 2016, 9985:998505.
[42] Petric P, Bevis C, Brodie A, et al. REBL nanowriter:Reflective electron beam lithography[C]//SPIE Advanced Lithography. Proc SPIE 7271, Alternative Lithographic Technologies, San Jose, California, USA. 2009, 7271:71-85.
[43] Slodowski M, Döring H, Stolberg I A, et al. Multishaped-beam (MSB):An evolutionary approach for high throughput e-beam lithography[C]//SPIE Photomask Technology. Proc SPIE 7823, Photomask Technology 2010, Monterey, California, USA. 2010, 7823:403-410.
[44] de Boer G, Dansberg M P, Jager R, et al. MAPPER:Progress toward a high-volume manufacturing system[C]//SPIE Advanced Lithography. Proc SPIE 8680, Alternative Lithographic Technologies V, San Jose, California, USA. 2013, 8680:106-117.
[45] Wieland M. Massively parallel charged particle optics enabled by MEMS fabrication techniques[EB/OL].[2022-05-03]. https://bt.pa.msu.edu/CPO-10/cgi-bin/abstracts.pl.
[46] Matsumoto H, Inoue H, Yamashita H, et al. Multi-beam mask writer MBM-1000 and its application field[C]//Proc SPIE 9984, Photomask Japan 2016:XXIII Symposium on Photomask and Next-Generation Lithography Mask Technology. 2016, 9984:26-31.
[47] Matsumoto H, Yamaguchi K, Kimura H, et al. Multibeam mask writer, MBM-2000[C]//Proc SPIE 11908, Photomask Japan 2021:XXVII Symposium on Photomask and Next-Generation Lithography Mask Technology, 2021, 11908:175-180.
[48] Wieland M J, Derks H, Gupta H, et al. Throughput enhancement technique for MAPPER maskless lithography[C]//SPIE Advanced Lithography. Proc SPIE 7637, Alternative Lithographic Technologies II, San Jose, California, USA. 2010, 7637:457-467.
[49] Chaudhary N, Luo Y, Savari S A. A parallel multibeam mask writing method and its impact on data volumes[C]//32nd European Mask and Lithography Conference","SPIE Proceedings. SPIE, 2016:1003206.
[50] Platzgummer E, Klein C, Loeschner H. Printing results of a proof-of-concept 50keV electron multi-beam mask exposure tool (eMET POC)[C]//SPIE Photomask Technology. Proc SPIE 8522, Photomask Technology 2012, Monterey, California, USA. 2012, 8522:427-434.
[51] Chaudhary N, Savari S A. Parallel compression/decompression-based datapath architecture for multibeam mask writers[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2017, 16:043503.
[52] Green M, Ham Y, Dillon B, et al. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)[C]//SPIE Photomask Technology. Proc SPIE 9985, Photomask Technology 2016, San Jose, California, USA. 2016, 9985:54-64.
[53] Platzgummer E, Cernusca S, Klein C, et al. eMET:50 keV electron mask exposure tool development based on proven multi-beam projection technology[C]//SPIE Photomask Technology. Proc SPIE 7823, Photomask Technology 2010, Monterey, California, USA. 2010, 7823:64-75.
[54] 顾文琪.电子束曝光技术的发展方向[C]//第十二届全国电子束、离子束和光子束学术年会论文集.北京:中国电子学会, 2003:26-31.
[55] 吴明均,黄兰友. DJ-2可变矩形电子束曝光机[J].电子显微学报, 1992, 11(2):137-143.
[56] 顾文琪,张福安.一种新型的具有角度限制的电子束投影曝光技术[J].微纳电子技术, 2002, 39(4):37-41.
[57] 高文洪,李祥.电子束曝光机激光精密定位[J].山东工学院学报, 1979, 9(2):60-66.
[58] 严伟,胡松,杨勇,等.电子束曝光系统中精密工件台的测量系统[J].微纳电子技术, 2009, 46(4):244-249.
[59] 庄炳河. DB-5型光栅扫描电子束曝光机真空系统[J].微细加工技术, 1991(1):46-50.
[60] 薛虹,顾文琪,刘俊标,等.实用化电子束曝光机的真空系统[C]//第十二届全国电子束、离子束和光子束学术年会论文集.北京:中国电子学会, 2003:118-120.
[61] 顾文琪,王理明.电子束曝光机的纳米图形生成技术[J].仪器仪表学报, 1996, 17(增刊1):112-113.
[62] 刘伟.纳米级电子束曝光系统用图形发生器技术研究[D].北京:中国科学院研究生院(电工研究所), 2006.
[63] 张明,张玉林,钟得智. SDS-2型电子束曝光机偏放系统的抗干扰改造[J].微细加工技术, 1997(2):20-22.
[64] 尹明,张玉林.电子束曝光机偏转系统及可动物镜分析[J].光学学报, 2004, 24(3):423-426.
[65] 刘珠明.纳米级电子束曝光机聚焦偏转系统的研究[D].北京:中国科学院研究生院(电工研究所), 2005.
[66] 刘俊标,方光荣,靳鹏云,等.基于SEM纳米级电子束曝光机的快速束闸设计[J].电子工业专用设备, 2008,(10):10-13.
[67] 张明. SDS-2电子束曝光机束闸线路[J].山东工业大学学报, 1988, 18(3):81-83.
[68] Sunaoshi H, Tachikawa Y, Higurashi H, et al. EBM-5000:Electron beam mask writer for 45 nm node[C]//Photomask and Next Generation Lithography Mask Technology XIII. Yokohama, Japan:Proceedings of Spie-The International Society For Optical Engineering, 2006, 6283:27-35.
Outlines

/