[1] Lin B J. Future of multiple-e-beam direct-write systems[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(3):033011.
[2] IEEE. International roadmap for devices and systems 2021 update[EB/OL].(2021-10-05)[2022-05-03]. https://irds.ieee.org/images/files/pdf/2021/2021IRDS_ES.pdf.
[3] Zhou Y, Qin Z, Liang Z Z, et al. Ultra-broadband metamaterial absorbers from long to very long infrared regime[J]. Light:Science&Applications, 2021, 10(1):138.
[4] Ritter M F, Fuhrer A, Haxell D Z, et al. A superconducting switch actuated by injection of high-energy electrons[J]. Nature Communications, 2021, 12:1266.
[5] Kanne T, Olsteins D, Marnauza M, et al. Double nanowires for hybrid quantum devices[J]. Advanced Functional Materials, 2022, 32(9):2107926.
[6] Duan H G, Fernández-Domínguez A I, Bosman M, et al. Nanoplasmonics:Classical down to the nanometer scale[J]. Nano Letters, 2012, 12(3):1683-1689.
[7] Kumar K, Duan H G, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9):557-561.
[8] Hu Y Q, Ou X N, Zeng T B, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Letters, 2021, 21(11):4554-4562.
[9] Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials[J]. Nature Reviews Materials, 2016, 1:16021.
[10] Chen Q, Liu Z W. Fabrication and applications of solidstate nanopores[J]. Sensors, 2019, 19(8):1886.
[11] Keerthi A, Goutham S, You Y, et al. Water friction in nanofluidic channels made from two-dimensional crystals[J]. Nature Communications, 2021, 12(1):3092.
[12] Liu L T, Kong L A, Li Q Y, et al. Transferred van der Waals metal electrodes for sub-1-nm MoS 2 vertical transistors[J]. Nature Electronics, 2021, 4(5):342-347.
[13] Buck D A, Shoulder K R. An approach to microminiature printed systems[C]//Papers and Discussions Presented at the December 3-5, 1958, Eastern Joint Computer Conference:Modern Computers:Objectives, Designs, Applications on XX-AIEE-ACM-IRE'58(Eastern). New York:ACM Press, 1958:55-59.
[14] Möllenstedt G, Speidel R. Elektronenoptischer mikroschreiber unter elektronenmikroskopischer arbeitskontrolle[J]. Physik Journal, 1960, 16(4):192-198.
[15] Ballantyne J P. Mask fabrication by electron-beam lithography[M]//Electron-Beam Technology in Microelectronic Fabrication. Amsterdam:Elsevier, 1980:259-307.
[16] Pfeiffer H C. Recent advances in electron-beam lithography for the high-volume production of VLSI devices[J]. IEEE Transactions on Electron Devices, 1979, 26(4):663-674.
[17] Berger S D, Gibson J M. New approach to projectionelectron lithography with demonstrated 0.1μm linewidth[J]. Applied Physics Letters, 1990, 57(2):153-155.
[18] Dhaliwal R S, Enichen W A, Golladay S D, et al. PREVAIL-electron projection technology approach for nextgeneration lithography[J]. IBM Journal of Research and Development, 2001, 45(5):615-638.
[19] Raith. High-resolution lithography with automation, throughput, and reliability[EB/OL].[2022-05-03]. https://raith.com/product/ebpg-plus/#info.
[20] Raith. Raith China Co., Ltd.[EB/OL].[2022-05-03]. https://expo.semi.org/china2020/public/eBooth.aspx?BoothID=476409&Task=Products.
[21] JEOL. JBX-9500FS电子束光刻系统[EB/OL].[2022-05-03]. https://www.jeol.com.cn/product/detail/229.
[22] Elionix. ELS-BODEN electron beam lithography system[EB/OL].[2022-05-03]. https://www.elionix.co.jp/english/products/els_boden.html.
[23] Crestec. CABL-UH (130kV) series[EB/OL].[2022-05-03]. http://www.crestec8.co.jp/index_ch/business_ch/copy_electron_ch.html#cabl130.
[24] 欣源科技北京有限公司. CRESTEC电子束直写[EB/OL].[2022-05-03]. http://www.globalimporter.net/cdetail_1966_7993984.html.
[25] Nanobeam. NanoBeam nB5[EB/OL].[2022-05-03]. http://www.nanobeam.co.uk/index.php?option=com_content&view=article&id=26&Itemid=48.
[26] 西北工业大学分析测试中心.电子束曝光系统[EB/OL].[2022-05-03]. https://atc.nwpu.edu.cn/info/1082/1127.htm.
[27] Nanobeam. nB5 electron beam lithography system[EB/OL].[2022-05-03]. https://www.tesscorn-nanoscience.com/wp-content/uploads/2017/02/nB5.pdf.
[28] Takemura Y. Will the multibeam era arrive?[EB/OL].[2022-05-03]. https://research-doc.credit-suisse.com/docView?language=ENG&format=PDF&sourceid=emcsplus&document_id=1066162281&serialid=CZePFAdNiSesJNpcbKcB3Uwj%2FHV4laTh9S45%2BV0OgMc%3D&cspId=null.
[29] Matsui H, Iwasaki K, Nakayamada N, et al. Electron Beam Mask Writer EBM-9500PLUS for logic 7nm+node generation[EB/OL].[2022-06-12]. http://www.nuflare.co.jp/english/products/beam/pdf/SPIE_Poster9.5kP_final.pdf.
[30] Pang L Y, Russell E V, Baggenstoss B, et al. Enabling faster VSB writing of 193i curvilinear ILT masks that improve wafer process windows for advanced memory applications[C]//SPIE Photomask Technology+EUV Lithography. Proc SPIE 11518, Photomask Technology 2020. 2020, 11518:128-145.
[31] Matsui H, Kamikubo T, Nakahashi S, et al. Electron beam mask writer EBM-9500 for logic 7nm node generation[C]//SPIE Photomask Technology. Proc SPIE 9985, Photomask Technology 2016, San Jose, California, USA. 2016, 9985:20-29.
[32] Nakayamada N, Kamikubo T, Anze H, et al. Advancing the charging effect correction with time-dependent discharging model[C]//Proc SPIE 8081, Photomask and Next-Generation Lithography Mask Technology XVIII. 2011, 8081:55-63.
[33] Nakayamada N, Wake S, Kamikubo T, et al. Modeling of charging effect and its correction by EB mask writer EBM-6000[C]//Proc SPIE 7028, Photomask and NextGeneration Lithography Mask Technology XV. 2008, 7028:106-117.
[34] Komagata T, Hasegawa T, Goto K, et al. Evaluation of a next generation EB mask writer for hp 32nm lithography[C]//Proc SPIE 7748, Photomask and Next-Generation Lithography Mask Technology XVII. 2010, 7748:155-164.[
[35] JEOL. JBX-3200MV电子束光刻系统[EB/OL].[2022-05-03]. https://www.jeol.com.cn/product/detail/230.
[36] Nuflare. EB mask writer EBM-9500[EB/OL].[2022-05-03]. http://www.nuflare.co.jp/english/products/beam/.
[37] Iijima T, Nakahashi S, Iikubo R, et al. Electron beam mask writer EBM-8000P for high throughput mask production[C]//SPIE Advanced Lithography. Proc SPIE 11324, Novel Patterning Technologies for Semiconductors, MEMS/NEMS and MOEMS 2020, San Jose, California, USA. 2020, 11324:194-199.
[38] Advantest.电子束曝光装置[EB/OL].(2013-03-13)[2022-05-03]. https://www3.advantest.com/documents/11348/146022/pdf_F7000_130227_jp.pdf/9e1aa3e1-15b9-4f1e-a10b-ddf1917b6497.
[39] Vistec. Vistec shaped beam technology[EB/OL].(2007-08-21)[2022-05-03]. https://www.yumpu.com/en/document/read/43226968/vistec-shaped-beam-technologyfasimit.
[40] Vistec. Vistec SB3050-2[EB/OL].[2022-05-03]. https://www.vistec-semi.com/products-services/vistec-sb254.
[41] Klein C, Platzgummer E. MBMW-101:World's 1st high-throughput multi-beam mask writer[C]//SPIE Photomask Technology. Proc SPIE 9985, Photomask Technology 2016, San Jose, California, USA. 2016, 9985:998505.
[42] Petric P, Bevis C, Brodie A, et al. REBL nanowriter:Reflective electron beam lithography[C]//SPIE Advanced Lithography. Proc SPIE 7271, Alternative Lithographic Technologies, San Jose, California, USA. 2009, 7271:71-85.
[43] Slodowski M, Döring H, Stolberg I A, et al. Multishaped-beam (MSB):An evolutionary approach for high throughput e-beam lithography[C]//SPIE Photomask Technology. Proc SPIE 7823, Photomask Technology 2010, Monterey, California, USA. 2010, 7823:403-410.
[44] de Boer G, Dansberg M P, Jager R, et al. MAPPER:Progress toward a high-volume manufacturing system[C]//SPIE Advanced Lithography. Proc SPIE 8680, Alternative Lithographic Technologies V, San Jose, California, USA. 2013, 8680:106-117.
[45] Wieland M. Massively parallel charged particle optics enabled by MEMS fabrication techniques[EB/OL].[2022-05-03]. https://bt.pa.msu.edu/CPO-10/cgi-bin/abstracts.pl.
[46] Matsumoto H, Inoue H, Yamashita H, et al. Multi-beam mask writer MBM-1000 and its application field[C]//Proc SPIE 9984, Photomask Japan 2016:XXIII Symposium on Photomask and Next-Generation Lithography Mask Technology. 2016, 9984:26-31.
[47] Matsumoto H, Yamaguchi K, Kimura H, et al. Multibeam mask writer, MBM-2000[C]//Proc SPIE 11908, Photomask Japan 2021:XXVII Symposium on Photomask and Next-Generation Lithography Mask Technology, 2021, 11908:175-180.
[48] Wieland M J, Derks H, Gupta H, et al. Throughput enhancement technique for MAPPER maskless lithography[C]//SPIE Advanced Lithography. Proc SPIE 7637, Alternative Lithographic Technologies II, San Jose, California, USA. 2010, 7637:457-467.
[49] Chaudhary N, Luo Y, Savari S A. A parallel multibeam mask writing method and its impact on data volumes[C]//32nd European Mask and Lithography Conference","SPIE Proceedings. SPIE, 2016:1003206.
[50] Platzgummer E, Klein C, Loeschner H. Printing results of a proof-of-concept 50keV electron multi-beam mask exposure tool (eMET POC)[C]//SPIE Photomask Technology. Proc SPIE 8522, Photomask Technology 2012, Monterey, California, USA. 2012, 8522:427-434.
[51] Chaudhary N, Savari S A. Parallel compression/decompression-based datapath architecture for multibeam mask writers[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2017, 16:043503.
[52] Green M, Ham Y, Dillon B, et al. Mask manufacturing of advanced technology designs using multi-beam lithography (part 2)[C]//SPIE Photomask Technology. Proc SPIE 9985, Photomask Technology 2016, San Jose, California, USA. 2016, 9985:54-64.
[53] Platzgummer E, Cernusca S, Klein C, et al. eMET:50 keV electron mask exposure tool development based on proven multi-beam projection technology[C]//SPIE Photomask Technology. Proc SPIE 7823, Photomask Technology 2010, Monterey, California, USA. 2010, 7823:64-75.
[54] 顾文琪.电子束曝光技术的发展方向[C]//第十二届全国电子束、离子束和光子束学术年会论文集.北京:中国电子学会, 2003:26-31.
[55] 吴明均,黄兰友. DJ-2可变矩形电子束曝光机[J].电子显微学报, 1992, 11(2):137-143.
[56] 顾文琪,张福安.一种新型的具有角度限制的电子束投影曝光技术[J].微纳电子技术, 2002, 39(4):37-41.
[57] 高文洪,李祥.电子束曝光机激光精密定位[J].山东工学院学报, 1979, 9(2):60-66.
[58] 严伟,胡松,杨勇,等.电子束曝光系统中精密工件台的测量系统[J].微纳电子技术, 2009, 46(4):244-249.
[59] 庄炳河. DB-5型光栅扫描电子束曝光机真空系统[J].微细加工技术, 1991(1):46-50.
[60] 薛虹,顾文琪,刘俊标,等.实用化电子束曝光机的真空系统[C]//第十二届全国电子束、离子束和光子束学术年会论文集.北京:中国电子学会, 2003:118-120.
[61] 顾文琪,王理明.电子束曝光机的纳米图形生成技术[J].仪器仪表学报, 1996, 17(增刊1):112-113.
[62] 刘伟.纳米级电子束曝光系统用图形发生器技术研究[D].北京:中国科学院研究生院(电工研究所), 2006.
[63] 张明,张玉林,钟得智. SDS-2型电子束曝光机偏放系统的抗干扰改造[J].微细加工技术, 1997(2):20-22.
[64] 尹明,张玉林.电子束曝光机偏转系统及可动物镜分析[J].光学学报, 2004, 24(3):423-426.
[65] 刘珠明.纳米级电子束曝光机聚焦偏转系统的研究[D].北京:中国科学院研究生院(电工研究所), 2005.
[66] 刘俊标,方光荣,靳鹏云,等.基于SEM纳米级电子束曝光机的快速束闸设计[J].电子工业专用设备, 2008,(10):10-13.
[67] 张明. SDS-2电子束曝光机束闸线路[J].山东工业大学学报, 1988, 18(3):81-83.
[68] Sunaoshi H, Tachikawa Y, Higurashi H, et al. EBM-5000:Electron beam mask writer for 45 nm node[C]//Photomask and Next Generation Lithography Mask Technology XIII. Yokohama, Japan:Proceedings of Spie-The International Society For Optical Engineering, 2006, 6283:27-35.