[1] Sontheimer-Phelps A, Hassell B A, Ingber D E. Modelling cancer in microfluidic human organs-on-chips[J]. Nature Reviews Cancer, 2019, 19(2):65-81.
[2] van de Stolpe A, Den Toonder J. Workshop meeting report Organs-on-Chips:Human disease models[J]. Lab on a Chip, 2013, 13(18):3449-3470.
[3] Franco R, Cedazo-Minguez A. Successful therapies for Alzheimer's disease:Why so many in animal models and none in humans?[J]. Frontiers in Pharmacology, 2014, 5:146.
[4] Fabre K, Berridge B, Proctor W R, et al. Introduction to a manuscript series on the characterization and use of microphysiological systems (MPS) in pharmaceutical safety and ADME applications[J]. Lab on a Chip, 2020, 20(6):1049-1057.
[5] Huch M, Knoblich J A, Lutolf M P, et al. The hope and the hype of organoid research[J]. Development, 2017, 144(6):938-941.
[6] Dutta D, Heo I, Clevers H. Disease modeling in stem cell-derived 3D organoid systems[J]. Trends in Molecular Medicine, 2017, 23(5):393-410.
[7] Velasco S, Kedaigle A J, Simmons S K, et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex[J]. Nature, 2019, 570(7762):523-527.
[8] Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630):560-564.
[9] Lancaster M A, Knoblich J A. Organogenesis in a dish:Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194):1247125.
[10] Yin S Y, Xi R B, Wu A W, et al. Patient-derived tumor-like cell clusters for drug testing in cancer therapy[J]. Science Translational Medicine, 2020, 12(549):eaaz1723.
[11] Hofer M, Lutolf M P. Engineering organoids[J]. Nature Reviews Materials, 2021, 6(5):402-420.
[12] Garreta E, Kamm R D, Chuva de Sousa Lopes S M, et al. Rethinking organoid technology through bioengineering[J]. Nature Materials, 2021, 20(2):145-155.
[13] Wang L, Li Z Y, Xu C, et al. Bioinspired engineering of organ-on-chip devices[J]. Advances in Experimental Medicine and Biology, 2019, 1174:401-440.
[14] Zhang B Y, Korolj A, Lai B F L, et al. Advances in organ-on-a-chip engineering[J]. Nature Reviews Materials, 2018, 3(8):257-278.
[15] Ingber D E. Human organs-on-chips for disease modelling, drug development and personalized medicine[J]. Nature Reviews Genetics, 2022, doi:doi:10.1038/s41576-022-00466-9.
[16] Low L A, Mummery C, Berridge B R, et al. Organs-onchips:Into the next decade[J]. Nature Reviews Drug Discovery, 2021, 20(5):345-361.
[17] Oliveira J M, Rui L R. Biomaterials-and microfluidicsbased tissue engineered 3D models[M]//Advances in Experimental Medicine and Biology. Berlin:Springer, 2020, 1230:27-42.
[18] Vunjak-Novakovic G, Ronaldson-Bouchard K, Radisic M. Organs-on-a-chip models for biological research[J]. Cell, 2021, 184(18):4597-4611.
[19] Park S E, Georgescu A, Huh D. Organoids-on-a-chip[J]. Science, 2019, 364(6444):960-965.
[20] Skardal A, Shupe T, Atala A. Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling[J]. Drug Discovery Today, 2016, 21(9):1399-1411.
[21] Zhao X L, Xu Z L, Xiao L, et al. Review on the vascularization of organoids and organoids-on-a-Chip[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9:637048.
[22] Takebe T, Zhang B Y, Radisic M. Synergistic engineering:Organoids meet organs-on-a-chip[J]. Cell Stem Cell, 2017, 21(3):297-300.
[23] Kim M, Mun H, Sung C O, et al. Patient-derived lung cancer organoids as in vitro cancer models for therapeutic screening[J]. Nature Communications, 2019, 10(1):1-15.
[24] Lau H C H, Kranenburg O, Xiao H P, et al. Organoid models of gastrointestinal cancers in basic and translational research[J]. Nature Reviews Gastroenterology&Hepatology, 2020, 17(4):203-222.
[25] Zhang S, Iyer S, Ran H, et al. Genetically defined, syngeneic organoid platform for developing combination therapies for ovarian cancer[J]. Cancer Discovery, 2021, 11(2):362-383.
[26] Kretzschmar K. Cancer research using organoid technology[J]. Journal of Molecular Medicine, 2021, 99(4):501-515.
[27] Lesavage B L, Suhar R A, Broguiere N, et al. Next-generation cancer organoids[J]. Nature Materials, 2022, 21(2):143-159.
[28] Tuveson D, Clevers H. Cancer modeling meets human organoid technology[J]. Science, 2019, 364(6444):952-955.
[29] Vlachogiannis G, Hedayat S, Vatsiou A, et al. Patientderived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926.
[30] Kopper O, de Witte C J, Lõhmussaar K, et al. An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity[J]. Nature Medicine, 2019, 25(5):838-849.
[31] Mizutani T, Clevers H. Primary intestinal epithelial organoid culture[J]. Methods in Molecular Biology, 2020, 2171:185-200.
[32] Prior N, Inacio P, Huch M. Liver organoids:From basic research to therapeutic applications[J]. Gut, 2019, 68(12):2228-2237.
[33] Rosenbluth J M, Schackmann R C J, Gray G K, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nature Communications, 2020, 11:1711.
[34] Barkauskas C E, Chung M I, Fioret B, et al. Lung organoids:Current uses and future promise[J]. Development, 2017, 144(6):986-997.
[35] Qu M L, Xiong L, Lu Y L, et al. Establishment of intestinal organoid cultures modeling injury-associated epithelial regeneration[J]. Cell Research, 2021, 31(3):259-271.
[36] Heo I, Dutta D, Schaefer D A, et al. Modelling Cryptosporidium infection in human small intestinal and lung organoids[J]. Nature Microbiology, 2018, 3(7):814-823.
[37] Lamers M M, Beumer J, van der Vaart J, et al. SARSCoV-2 productively infects human gut enterocytes[J]. Science, 2020, 369(6499):50-54.
[38] Tindle C, Fuller M, Fonseca A, et al. Adult stem cellderived complete lung organoid models emulate lung disease in COVID-19[J]. eLife, 2021, 10:e66417.
[39] Huang J, Hume A J, Abo K M, et al. SARS-CoV-2 infection of pluripotent stem cell-derived human lung alveolar type 2 cells elicits a rapid epithelial-intrinsic inflammatory response[J]. Cell Stem Cell, 2020, 27(6):962-973.e7.
[40] Qian X Y, Nguyen H N, Song M M, et al. Brain-regionspecific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5):1238-1254.
[41] Ramli M N B, Lim Y S, Koe C T, et al. Human pluripotent stem cell-derived organoids as models of liver disease[J]. Gastroenterology, 2020, 159(4):1471-1486.e12.
[42] Sabitha K R, Shetty A K, Upadhya D. Patient-derived iPSC modeling of rare neurodevelopmental disorders:Molecular pathophysiology and prospective therapies[J]. Neuroscience&Biobehavioral Reviews, 2021, 121:201-219.
[43] Dost A F M, Moye A L, Vedaie M, et al. Organoids model transcriptional hallmarks of oncogenic KRAS activation in lung epithelial progenitor cells[J]. Cell Stem Cell, 2020, 27(4):663-678.e8.
[44] Kopper J J, Iennarella-Servantez C, Jergens A E, et al. Harnessing the biology of canine intestinal organoids to heighten understanding of inflammatory bowel disease pathogenesis and accelerate drug discovery:A one health approach[J]. Frontiers in Toxicology, 2021, 3:773953.
[45] Truskey G A. Human microphysiological systems and organoids as in vitro models for toxicological studies[J]. Frontiers in Public Health, 2018, 6:185.
[46] Chen W L K, Edington C, Suter E, et al. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk[J]. Biotechnology and Bioengineering, 2017, 114(11):2648-2659.
[47] Malik M, Yang Y, Fathi P, et al. Critical considerations for the design of multi-organ microphysiological systems (MPS)[J]. Frontiers in Cell and Developmental Biology, 2021, 9:721338.
[48] Novak R, Ingram M, Marquez S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nature Biomedical Engineering, 2020, 4(4):407-420.
[49] Huh D, Leslie D C, Matthews B D, et al. A human disease model of drug toxicity-induced pulmonary edema in a lung-on-a-chip microdevice[J]. Science Translational Medicine, 2012, 4(159):159ra147.
[50] Jain A, Barrile R, van der Meer A D, et al. Primary human lung alveolus-on-a-chip model of intravascular thrombosis for assessment of therapeutics[J]. Clinical Pharmacology and Therapeutics, 2018, 103(2):332-340.
[51] Hassell B A, Goyal G, Lee E, et al. Human organ chip models recapitulate orthotopic lung cancer growth, therapeutic responses, and tumor dormancy in vitro[J]. Cell Reports, 2017, 21(2):508-516.
[52] Si L, Bai H, Oh C Y, et al. Self-assembling short immunostimulatory duplex RNAs with broad spectrum antiviral activity[J]. BioRxiv:the Preprint Server for Biology, 2021, doi:2021.11.19.469183.
[53] Benam K H, Villenave R, Lucchesi C, et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro[J]. Nature Methods, 2016, 13(2):151-157.
[54] Gard A L, Luu R J, Miller C R, et al. High-throughput human primary cell-based airway model for evaluating influenza, coronavirus, or other respiratory viruses in vitro[J]. Scientific Reports, 2021, 11(1):14961.
[55] Plebani R, Potla R, Soong M, et al. Modeling pulmonary cystic fibrosis in a human lung airway-on-a-chip:Cystic fibrosis airway chip[J]. Journal of Cystic Fibrosis:Official Journal of the European Cystic Fibrosis Society, 2021, doi:10.1016/j.jcf.2021.10.004.
[56] Jang K J, Otieno M A, Ronxhi J, et al. Reproducing human and cross-species drug toxicities using a LiverChip[J]. Science Translational Medicine, 2019, 11(517):eaax5516.
[57] Ortega-Prieto A M, Skelton J K, Wai S N, et al. 3D microfluidic liver cultures as a physiological preclinical tool for hepatitis B virus infection[J]. Nature Communications, 2018, 9(1):682.
[58] Wang L, Tao T T, Su W T, et al. A disease model of diabetic nephropathy in a glomerulus-on-a-chip microdevice[J]. Lab on a Chip, 2017, 17(10):1749-1760.
[59] Zhou M Y, Zhang X L, Wen X Y, et al. Development of a functional glomerulus at the organ level on a chip to mimic hypertensive nephropathy[J]. Scientific Reports, 2016, 6:31771.
[60] Lin N Y C, Homan K A, Robinson S S, et al. Renal reabsorption in 3D vascularized proximal tubule models[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(12):5399-5404.
[61] Lacombe J, Soldevila M, Zenhausern F. From organ-onchip to body-on-chip:The next generation of microfluidics platforms for in vitro drug efficacy and toxicity testing[M]//Progress in Molecular Biology and Translational Science. Amsterdam:Elsevier, 2022:41-91.
[62] Luni C, Serena E, Elvassore N. Human-on-chip for therapy development and fundamental science[J]. Current Opinion in Biotechnology, 2014, 25:45-50.
[63] Zhang C, Zhao Z Q, Abdul Rahim N A, et al. Towards a human-on-chip:Culturing multiple cell types on a chip with compartmentalized microenvironments[J]. Lab on a Chip, 2009, 9(22):3185-3192.
[64] Sasserath T, Rumsey J W, Mcaleer C W, et al. Differential monocyte actuation in a three-organ functional innate immune system-on-a-chip[J]. Advanced Science, 2020, 7(13):2000323.
[65] Chen W L K, Edington C, Suter E, et al. Integrated gut/liver microphysiological systems elucidates inflammatory inter-tissue crosstalk[J]. Biotechnology and Bioengineering, 2017, 114(11):2648-2659.
[66] Skardal A, Devarasetty M, Forsythe S, et al. A reductionist metastasis-on-a-chip platform for in vitro tumor progression modeling and drug screening[J]. Biotechnology and Bioengineering, 2016, 113(9):2020-2032.
[67] Chang S Y, Weber E J, Sidorenko V S, et al. Human liver-kidney model elucidates the mechanisms of aristolochic acid nephrotoxicity[J]. JCI Insight, 2017, 2(22):e95978.
[68] Mcaleer C W, Long C J, Elbrecht D, et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics[J]. Science Translational Medicine, 2019, 11(497):eaav1386.
[69] Herland A, Maoz B M, Das D, et al. Quantitative prediction of human pharmacokinetic responses to drugs via fluidically coupled vascularized organ chips[J]. Nature Biomedical Engineering, 2020, 4(4):421-436.
[70] Demers C J, Soundararajan P, Chennampally P, et al. Development-on-chip:in vitro neural tube patterning with a microfluidic device[J]. Development, 2016, 143(11):1884-1892.
[71] Wang Y L, Gunasekara D B, Reed M I, et al. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium[J]. Biomaterials, 2017, 128:44-55.
[72] Shin Y C, Shin W, Koh D, et al. Three-dimensional regeneration of patient-derived intestinal organoid epithelium in a physiodynamic mucosal interface-on-a-chip[J]. Micromachines, 2020, 11(7):663.
[73] Mun K S, Arora K, Huang Y J, et al. Patient-derived pancreas-on-a-chip to model cystic fibrosis-related disorders[J]. Nature Communications, 2019, 10:3124.
[74] Wang Y Q, Wang L, Zhu Y J, et al. Human brain organoid-on-a-chip to model prenatal nicotine exposure[J]. Lab on a Chip, 2018, 18(6):851-860.
[75] Cui K L, Wang Y Q, Zhu Y J, et al. Neurodevelopmental impairment induced by prenatal valproic acid exposure shown with the human cortical organoid-on-a-chip model[J]. Microsystems&Nanoengineering, 2020, 6:49.
[76] Achberger K, Probst C, Haderspeck J, et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retinaon-a-chip platform[J]. eLife, 2019, 8:e46188.
[77] Tao T, Deng P, Wang Y, et al. Microengineered multiorganoid system from hiPSCs to recapitulate human liver-islet axis in normal and type 2 diabetes[J]. Advanced Science, 2022, 9(5):e2103495.
[78] Homan K A, Gupta N, Kroll K T, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nature Methods, 2019, 16(3):255-262.