Exclusive:Organoids

Self-powered technology and implantable cardiac electronic medical devices

  • WU Li ,
  • LUO Ruizeng ,
  • XUE Ziao ,
  • WU Yuxiang ,
  • LI Zhou
Expand
  • 1. School of Physical Education, Jianghan University, Wuhan 430056, China;
    2. Beijing Institute of Nano-Energy and Systems, Chinese Academy of Sciences, Beijing 101400, China;
    3. School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-05-20

  Revised date: 2022-06-10

  Online published: 2022-08-05

Abstract

As the main component of the human circulatory system, the cardiovascular system plays an important role in maintaining the normal life activities of the human body. Limited by the battery life of the traditional implantable cardiac electronic medical devices, it is difficult to achieve the long-term, uninterrupted monitoring and treatment. The newly developed self-powered technology solves this problem. In this paper, we review the types and the principles of the self-powered technology, and the application of the self-powered technology in the implantable cardiac electronic medical devices from three aspects: the energy supply, the sensing and the electrical stimulation. The development of the self-powered implantable cardiac electronic medical devices is discussed from the perspectives of the energy collection and storage management, the long-term biocompatibility of the implants, and the biological effects of the electrical stimulation.

Cite this article

WU Li , LUO Ruizeng , XUE Ziao , WU Yuxiang , LI Zhou . Self-powered technology and implantable cardiac electronic medical devices[J]. Science & Technology Review, 2022 , 40(12) : 53 -65 . DOI: 10.3981/j.issn.1000-7857.2022.12.005

References

[1] Mulpuru S K, Madhavan M, Mcleod C J, et al. Cardiac pacemakers:Function, troubleshooting, and management:part 1 of a 2-part series[J]. Journal of the American College of Cardiology, 2017, 69(2):189-210.
[2] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246.
[3] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2):328-334.
[4] Haeberlin A, Zurbuchen A, Walpen S, et al. The first batteryless, solar-powered cardiac pacemaker[J]. Heart Rhythm, 2015, 12(6):1317-1323.
[5] Ryu H, Kim S W. Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy[J]. Small, 2021, 17(9):e1903469.
[6] Chen H F, Ru X L, Wang H, et al. Construction of a cascade catalyst of nanocoupled living red blood cells for implantable biofuel cell[J]. ACS Applied Materials & Interfaces, 2021, 13(24):28010-28016.
[7] Wong C P, Marinis T, Qu J M, et al. A precise numerical prediction of effective dielectric constant for polymerceramic composite based on effective-medium theory[J]. IEEE Transactions on Components and Packaging Technologies, 2000, 23(4):680-683.
[8] Guan X C, Zhang Y D, Li H, et al. PZT/PVDF composites doped with carbon nanotubes[J]. Sensors and Actuators A:Physical, 2013, 194:228-231.
[9] Huang S, Tang G, Huang H L, et al. Enhanced piezo-re-sponse in copper halide perovskites based PVDF composite films[J]. Science Bulletin, 2018, 63(19):1254-1259.
[10] Sutradhar S, Saha S M, Javed S. Shielding effectiveness study of Barium hexaferrite-incorporated, β-phase-improved poly (vinylidene fluoride) composite film:A meta-material useful for the reduction of electromagnetic pol-lution[J]. ACS Applied Materials & Interfaces, 2019, 11(26):23701-23713.
[11] Li Y H, Su X X, Liang K, et al. Multi-layered BTO/PVDF nanogenerator with highly enhanced performance induced by interlaminar electric field[J]. Microelectronic Engineering, 2021, 244-246:111557.
[12] Shi K M, Chai B, Zou H Y, et al. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators[J]. Nano Energy, 2021, 80:105515.
[13] Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11):9533-9557.
[14] Wang Z L, Chen J, Lin L. Progress in triboelectric nano-generators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science, 2015, 8(8):2250-2282.
[15] Chen J, Huang Y, Zhang N N, et al. Microcable structured textile for simultaneously harvesting solar and mechanical energy[J]. Nature Energy, 2016, 1:16138.
[16] Niu S M, Wang S H, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy&Environmental Science, 2013, 6(12):3576-3583.
[17] Zhu G, Pan C F, Guo W X, et al. Triboelectric-genera-tor-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 2012, 12(9):4960-4965.
[18] Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics[J]. Nano Letters, 2012, 12(12):6339-6346.
[19] Zou Y, Liao J W, Ouyang H, et al. A flexible selfarched biosensor based on combination of piezoelectric and triboelectric effects[J]. Applied Materials Today, 2020, 20:100699.
[20] Chen H M, Yang W, Zhang C, et al. Performance-en-hanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 moni-toring[J]. Nano Research, 2022, 15(3):2465-2471.
[21] Wang S H, Lin L, Xie Y N, et al. Sliding-triboelectric nanogenerators based on Inplane charge-separation mechanism[J]. Nano Letters, 2013, 13(5):2226-2233.
[22] Feng H Q, Bai Y, Qiao L, et al. An ultra-simple charge supplementary strategy for high performance rotary tribo-electric nanogenerators[J]. Small, 2021, 17(29):e2101430.
[23] Zhu G, Zhou Y S, Bai P, et al. A shape-adaptive thinfilm-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification[J]. Advanced Materials, 2014, 26(23):3788-3796.
[24] Wu Y X, Li Y S, Zou Y, et al. A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring[J]. Nano Energy, 2022, 92:106715.
[25] Yang Y, Zhang H L, Chen J, et al. Single-electrodebased sliding triboelectric nanogenerator for self-powered displacement vector sensor system[J]. ACS Nano, 2013, 7(8):7342-7351.
[26] Chen Y L, Li D Q, Xu Y L, et al. Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators[J]. International Journal of Biological Macromolecules, 2022, 208:324-332.
[27] Xie X K, Chen Y F, Jiang J X, et al. Self-powered gyroscope angle sensor based on resistive matching effect of triboelectric nanogenerator[J]. Advanced Materials Technologies, 2021, 6(10):2170060.
[28] Lu X H, Li H C, Zhang X S, et al. Magnetic-assisted self-powered acceleration sensor for real-time monitoring vehicle operation and collision based on triboelectric nanogenerator[J]. Nano Energy, 2022, 96:107094.
[29] Ren Z W, Nie J H, Shao J J, et al. Fully elastic and metal-free tactile sensors for detecting both normal and tan-gential forces based on triboelectric nanogenerators[J]. Advanced Functional Materials, 2018, 28(31):1802989.
[30] Wang S H, Xie Y N, Niu S M, et al. Freestanding tribo-electric-layer-based nanogenerators for harvesting ener-gy from a moving object or human motion in contact and non-contact modes[J]. Advanced Materials, 2014, 26(18):2818-2824.
[31] Khan U, Kim S W. Triboelectric nanogenerators for blue energy harvesting[J]. ACS Nano, 2016, 10(7):6429-6432.
[32] Yang Y, Guo W X, Pradel K C, et al. Pyroelectric nano-generators for harvesting thermoelectric energy[J]. Nano Letters, 2012, 12(6):2833-2838.
[33] Lee J H, Ryu H, Kim T Y, et al. Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators[J]. Advanced Energy Materials, 2015, 5(18):1500704.
[34] Yang Y, Zhou Y S, Wu J M, et al. Single micro/nanow-ire pyroelectric nanogenerators as self-powered tempera-ture sensors[J]. ACS Nano, 2012, 6(9):8456-8461.
[35] Wang X F, Dai Y J, Liu R Y, et al. Light-triggered pyro-electric nanogenerator based on a pnjunction for selfpowered near-infrared photosensing[J]. ACS Nano, 2017, 11(8):8339-8345.
[36] Zhao T T, Jiang W T, Niu D, et al. Flexible pyroelectric device for scavenging thermal energy from chemical pro-cess and as self-powered temperature monitor[J]. Applied Energy, 2017, 195:754-760.
[37] Zebda A, Alcaraz J P, Vadgama P, et al. Challenges for successful implantation of biofuel cells[J]. Bioelectro-chemistry, 2018, 124:57-72.
[38] Dagdeviren C, Li Z, Wang Z L. Energy harvesting from the animal/human body for self-powered electronics[J]. Annual Review of Biomedical Engineering, 2017, 19:85-108.
[39] Palmore G T R, Whitesides G M. Microbial and enzymatic biofuel cells[M]//ACS Symposium Series. Washington, D. C.:American Chemical Society, 1994:271-290.
[40] Higgins S R, Lau C, Atanassov P, et al. Hybrid biofuel cell:Microbial fuel cell with an enzymatic air-breathing cathode[J]. ACS Catalysis, 2011, 1(9):994-997.
[41] Deng L, Chen C G, Zhou M, et al. Integrated self-powered microchip biosensor for endogenous biological cyanide[J]. Analytical Chemistry, 2010, 82(10):4283-4287.
[42] Wang T, Milton R D, Abdellaoui S, et al. Laccase inhibi-tion by arsenite/arsenate:Determination of inhibition mechanism and preliminary application to a self-powered biosensor[J]. Analytical Chemistry, 2016, 88(6):3243-3248.
[43] Liu W, Ma H L, Walsh A. Advance in photonic crystal solar cells[J]. Renewable and Sustainable Energy Reviews, 2019, 116:109436.
[44] Park N G. Methodologies for high efficiency perovskite solar cells[J]. Nano Convergence, 2016, 3(1):1-13.
[45] Haeberlin A, Zurbuchen A, Schaerer J, et al. Successful pacing using a batteryless sunlight-powered pacemaker[J]. EP Europace, 2014, 16(10):1534-1539.
[46] Bereuter L, Williner S, Pianezzi F, et al. Energy harvesting by subcutaneous solar cells:A long-term study on achievable energy output[J]. Annals of Biomedical Engi-neering, 2017, 45(5):1172-1180.
[47] Zurbuchen A, Pfenniger A, Stahel A, et al. Energy harvesting from the beating heart by a mass imbalance oscillation generator[J]. Annals of Biomedical Engineering, 2013, 41(1):131-141.
[48] Zurbuchen A, Haeberlin A, Pfenniger A, et al. Towards batteryless cardiac implantable electronic devices-The Swiss way[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(1):78-86.
[49] Cinquin P, Gondran C, Giroud F, et al. A glucose biofuel cell implanted in rats[J]. PLoS One, 2010, 5(5):e10476.
[50] Olivo J, Carrara S, de Micheli G. Energy harvesting and remote powering for implantable biosensors[J]. IEEE Sensors Journal, 2011, 11(7):1573-1586.
[51] Sun L, Cheng C L, Wang S, et al. Bioinspired, nanostruc-ture-amplified, subcutaneous light harvesting to power implantable biomedical electronics[J]. ACS Nano, 2021, 15(8):12475-12482.
[52] Liu Z, Zheng Q, Shi Y, et al. Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction[J]. Journal of Materials Chemistry B, 2020, 8(16):3647-3654.
[53] Yang W Q, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking[J]. ACS Nano, 2013, 7(12):11317-11324.
[54] Meng X S, Zhu G, Wang Z L. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy[J]. ACS Applied Materials & Inter-faces, 2014, 6(11):8011-8016.
[55] Zhu G, Su Y J, Bai P, et al. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface[J]. ACS Nano, 2014, 8(6):6031-6037.
[56] Bhatta T, Maharjan P, Salauddin M, et al. A batteryless arbitrary motion sensing system using magnetic repulsion-based self-powered motion sensors and hybrid nanogen-erator[J]. Advanced Functional Materials, 2020, 30(36):2003276.
[57] Li X D, Li Y, Zhang M J, et al. Carbon nano thorn ar-rays based water/cold resisted nanogenerator for wind en-ergy harvesting and speed sensing[J]. Nano Energy, 2021, 90:106571.
[58] Tan P C, Han X, Zou Y, et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input[J]. Advanced Materials, 2022, 34(21):e2200793.
[59] Wang C, Qu X C, Zheng Q, et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment[J]. ACS Nano, 2021, 15(6):10130-10140.
[60] Li Z, Feng H Q, Zheng Q, et al. Photothermally tunable biodegradation of implantable triboelectric nanogenera-tors for tissue repairing[J]. Nano Energy, 2018, 54:390-399.
[61] Lu Y F, Li H S, Wang J, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J]. Advanced Functional Materials, 2021, 31(48):2105749.
[62] Ouyang H, Liu Z, Li N, et al. Symbiotic cardiac pace-maker[J]. Nature Communications, 2019, 10:1821.
[63] Luo R Z, Dai J Y, Zhang J P, et al. Accelerated skin wound healing by electrical stimulation[J]. Advanced Healthcare Materials, 2021, 10(16):e2100557.
[64] Yu B, Qiao Z G, Cui J J, et al. A host-coupling bionanogenerator for electrically stimulated osteogenesis[J]. Biomaterials, 2021, 276:120997.
[65] Li Z, Zhu G A, Yang R S, et al. Muscle-driven in vivo nanogenerator[J]. Advanced Materials, 2010, 22(23):2534-2537.
[66] Zhao L M, Li H, Meng J P, et al. Combining triboelectric nanogenerator with piezoelectric effect for optimizing Schottky barrier height modulation[J]. Science Bulle-tin, 2021, 66(14):1409-1418.
[67] Jin C R, Dong L, Xu Z, et al. Skin-like elastomer embedded zinc oxide nanoarrays for biomechanical energy harvesting[J]. Advanced Materials Interfaces, 2021, 8(10):2100094.
[68] Dagdeviren C, Yang B D, Su Y W, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5):1927-1932.
[69] Dong L, Closson A B, Oglesby M, et al. In vivo cardiac power generation enabled by an integrated helical piezo-electric pacemaker lead[J]. Nano Energy, 2019, 66:104085.
[70] Dong L, Closson A B, Jin C R, et al. Multifunctional pacemaker lead for cardiac energy harvesting and pres-sure sensing[J]. Advanced Healthcare Materials, 2020, 9(11):e2000053.
[71] Dong L, Wen C S, Liu Y, et al. Piezoelectric buckled beam array on a pacemaker lead for energy harvesting[J]. Advanced Materials Technologies, 2019, 4(1):1800335.
[72] Xu Z, Jin C R, Cabe A, et al. Flexible energy harvester on a pacemaker lead using multibeam piezoelectric com-posite thin films[J]. ACS Applied Materials & Interfaces, 2020, 12(30):34170-34179.
[73] Azimi S, Golabchi A, Nekookar A, et al. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant[J]. Nano Energy, 2021, 83:105781.
[74] Zheng Q, Shi B J, Fan F R, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator[J]. Advanced Materials, 2014, 26(33):5851-5856.
[75] Ryu H, Park H M, Kim M K, et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenera-tors[J]. Nature Communications, 2021, 12:4374.
[76] Ma Y, Zheng Q, Liu Y, et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sen-sor for real-time biomedical monitoring[J]. Nano Letters, 2016, 16(10):6042-6051.
[77] Zhao D N, Zhuo J T, Chen Z T, et al. Eco-friendly in situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities[J]. Nano Energy, 2021, 90:106580.
[78] Zheng Q, Zhang H, Shi B J, et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator[J]. ACS Nano, 2016, 10(7):6510-6518.
[79] Kim D H, Shin H J, Lee H, et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters[J]. Advanced Functional Materials, 2017, 27(25):1700341.
[80] Li J, Hacker T A, Wei H, et al. Long-term in vivo opera-tion of implanted cardiac nanogenerators in swine[J]. Na-no Energy, 2021, 90:106507.
[81] Liu Z, Ma Y, Ouyang H, et al. Transcatheter self-pow-ered ultrasensitive endocardial pressure sensor[J]. Ad-vanced Functional Materials, 2019, 29(3):1807560.
[82] Ouyang H, Li Z, Gu M, et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care[J]. Advanced Materials, 2021, 33(39):e2102302.
[83] Hwang G T, Park H, Lee J H, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester[J]. Advanced Materials, 2014, 26(28):4880-4887.
[84] Choi Y S, Yin R T, Pfenniger A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries[J]. Nature Biotechnology, 2021, 39(10):1228-1238.
[85] Sun Y, Chao S Y, Ouyang H, et al. Hybrid nanogenera-tor based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment[J]. Science Bulletin, 2022, 67(12):1284-1294.
Outlines

/