[1] Mulpuru S K, Madhavan M, Mcleod C J, et al. Cardiac pacemakers:Function, troubleshooting, and management:part 1 of a 2-part series[J]. Journal of the American College of Cardiology, 2017, 69(2):189-210.
[2] Wang Z L, Song J H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771):242-246.
[3] Fan F R, Tian Z Q, Wang Z L. Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2):328-334.
[4] Haeberlin A, Zurbuchen A, Walpen S, et al. The first batteryless, solar-powered cardiac pacemaker[J]. Heart Rhythm, 2015, 12(6):1317-1323.
[5] Ryu H, Kim S W. Emerging pyroelectric nanogenerators to convert thermal energy into electrical energy[J]. Small, 2021, 17(9):e1903469.
[6] Chen H F, Ru X L, Wang H, et al. Construction of a cascade catalyst of nanocoupled living red blood cells for implantable biofuel cell[J]. ACS Applied Materials & Interfaces, 2021, 13(24):28010-28016.
[7] Wong C P, Marinis T, Qu J M, et al. A precise numerical prediction of effective dielectric constant for polymerceramic composite based on effective-medium theory[J]. IEEE Transactions on Components and Packaging Technologies, 2000, 23(4):680-683.
[8] Guan X C, Zhang Y D, Li H, et al. PZT/PVDF composites doped with carbon nanotubes[J]. Sensors and Actuators A:Physical, 2013, 194:228-231.
[9] Huang S, Tang G, Huang H L, et al. Enhanced piezo-re-sponse in copper halide perovskites based PVDF composite films[J]. Science Bulletin, 2018, 63(19):1254-1259.
[10] Sutradhar S, Saha S M, Javed S. Shielding effectiveness study of Barium hexaferrite-incorporated, β-phase-improved poly (vinylidene fluoride) composite film:A meta-material useful for the reduction of electromagnetic pol-lution[J]. ACS Applied Materials & Interfaces, 2019, 11(26):23701-23713.
[11] Li Y H, Su X X, Liang K, et al. Multi-layered BTO/PVDF nanogenerator with highly enhanced performance induced by interlaminar electric field[J]. Microelectronic Engineering, 2021, 244-246:111557.
[12] Shi K M, Chai B, Zou H Y, et al. Interface induced performance enhancement in flexible BaTiO3/PVDF-TrFE based piezoelectric nanogenerators[J]. Nano Energy, 2021, 80:105515.
[13] Wang Z L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J]. ACS Nano, 2013, 7(11):9533-9557.
[14] Wang Z L, Chen J, Lin L. Progress in triboelectric nano-generators as a new energy technology and self-powered sensors[J]. Energy & Environmental Science, 2015, 8(8):2250-2282.
[15] Chen J, Huang Y, Zhang N N, et al. Microcable structured textile for simultaneously harvesting solar and mechanical energy[J]. Nature Energy, 2016, 1:16138.
[16] Niu S M, Wang S H, Lin L, et al. Theoretical study of contact-mode triboelectric nanogenerators as an effective power source[J]. Energy&Environmental Science, 2013, 6(12):3576-3583.
[17] Zhu G, Pan C F, Guo W X, et al. Triboelectric-genera-tor-driven pulse electrodeposition for micropatterning[J]. Nano Letters, 2012, 12(9):4960-4965.
[18] Wang S H, Lin L, Wang Z L. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics[J]. Nano Letters, 2012, 12(12):6339-6346.
[19] Zou Y, Liao J W, Ouyang H, et al. A flexible selfarched biosensor based on combination of piezoelectric and triboelectric effects[J]. Applied Materials Today, 2020, 20:100699.
[20] Chen H M, Yang W, Zhang C, et al. Performance-en-hanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 moni-toring[J]. Nano Research, 2022, 15(3):2465-2471.
[21] Wang S H, Lin L, Xie Y N, et al. Sliding-triboelectric nanogenerators based on Inplane charge-separation mechanism[J]. Nano Letters, 2013, 13(5):2226-2233.
[22] Feng H Q, Bai Y, Qiao L, et al. An ultra-simple charge supplementary strategy for high performance rotary tribo-electric nanogenerators[J]. Small, 2021, 17(29):e2101430.
[23] Zhu G, Zhou Y S, Bai P, et al. A shape-adaptive thinfilm-based approach for 50% high-efficiency energy generation through micro-grating sliding electrification[J]. Advanced Materials, 2014, 26(23):3788-3796.
[24] Wu Y X, Li Y S, Zou Y, et al. A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring[J]. Nano Energy, 2022, 92:106715.
[25] Yang Y, Zhang H L, Chen J, et al. Single-electrodebased sliding triboelectric nanogenerator for self-powered displacement vector sensor system[J]. ACS Nano, 2013, 7(8):7342-7351.
[26] Chen Y L, Li D Q, Xu Y L, et al. Surface-microstructured cellulose films toward sensitive pressure sensors and efficient triboelectric nanogenerators[J]. International Journal of Biological Macromolecules, 2022, 208:324-332.
[27] Xie X K, Chen Y F, Jiang J X, et al. Self-powered gyroscope angle sensor based on resistive matching effect of triboelectric nanogenerator[J]. Advanced Materials Technologies, 2021, 6(10):2170060.
[28] Lu X H, Li H C, Zhang X S, et al. Magnetic-assisted self-powered acceleration sensor for real-time monitoring vehicle operation and collision based on triboelectric nanogenerator[J]. Nano Energy, 2022, 96:107094.
[29] Ren Z W, Nie J H, Shao J J, et al. Fully elastic and metal-free tactile sensors for detecting both normal and tan-gential forces based on triboelectric nanogenerators[J]. Advanced Functional Materials, 2018, 28(31):1802989.
[30] Wang S H, Xie Y N, Niu S M, et al. Freestanding tribo-electric-layer-based nanogenerators for harvesting ener-gy from a moving object or human motion in contact and non-contact modes[J]. Advanced Materials, 2014, 26(18):2818-2824.
[31] Khan U, Kim S W. Triboelectric nanogenerators for blue energy harvesting[J]. ACS Nano, 2016, 10(7):6429-6432.
[32] Yang Y, Guo W X, Pradel K C, et al. Pyroelectric nano-generators for harvesting thermoelectric energy[J]. Nano Letters, 2012, 12(6):2833-2838.
[33] Lee J H, Ryu H, Kim T Y, et al. Thermally induced strain-coupled highly stretchable and sensitive pyroelectric nanogenerators[J]. Advanced Energy Materials, 2015, 5(18):1500704.
[34] Yang Y, Zhou Y S, Wu J M, et al. Single micro/nanow-ire pyroelectric nanogenerators as self-powered tempera-ture sensors[J]. ACS Nano, 2012, 6(9):8456-8461.
[35] Wang X F, Dai Y J, Liu R Y, et al. Light-triggered pyro-electric nanogenerator based on a pnjunction for selfpowered near-infrared photosensing[J]. ACS Nano, 2017, 11(8):8339-8345.
[36] Zhao T T, Jiang W T, Niu D, et al. Flexible pyroelectric device for scavenging thermal energy from chemical pro-cess and as self-powered temperature monitor[J]. Applied Energy, 2017, 195:754-760.
[37] Zebda A, Alcaraz J P, Vadgama P, et al. Challenges for successful implantation of biofuel cells[J]. Bioelectro-chemistry, 2018, 124:57-72.
[38] Dagdeviren C, Li Z, Wang Z L. Energy harvesting from the animal/human body for self-powered electronics[J]. Annual Review of Biomedical Engineering, 2017, 19:85-108.
[39] Palmore G T R, Whitesides G M. Microbial and enzymatic biofuel cells[M]//ACS Symposium Series. Washington, D. C.:American Chemical Society, 1994:271-290.
[40] Higgins S R, Lau C, Atanassov P, et al. Hybrid biofuel cell:Microbial fuel cell with an enzymatic air-breathing cathode[J]. ACS Catalysis, 2011, 1(9):994-997.
[41] Deng L, Chen C G, Zhou M, et al. Integrated self-powered microchip biosensor for endogenous biological cyanide[J]. Analytical Chemistry, 2010, 82(10):4283-4287.
[42] Wang T, Milton R D, Abdellaoui S, et al. Laccase inhibi-tion by arsenite/arsenate:Determination of inhibition mechanism and preliminary application to a self-powered biosensor[J]. Analytical Chemistry, 2016, 88(6):3243-3248.
[43] Liu W, Ma H L, Walsh A. Advance in photonic crystal solar cells[J]. Renewable and Sustainable Energy Reviews, 2019, 116:109436.
[44] Park N G. Methodologies for high efficiency perovskite solar cells[J]. Nano Convergence, 2016, 3(1):1-13.
[45] Haeberlin A, Zurbuchen A, Schaerer J, et al. Successful pacing using a batteryless sunlight-powered pacemaker[J]. EP Europace, 2014, 16(10):1534-1539.
[46] Bereuter L, Williner S, Pianezzi F, et al. Energy harvesting by subcutaneous solar cells:A long-term study on achievable energy output[J]. Annals of Biomedical Engi-neering, 2017, 45(5):1172-1180.
[47] Zurbuchen A, Pfenniger A, Stahel A, et al. Energy harvesting from the beating heart by a mass imbalance oscillation generator[J]. Annals of Biomedical Engineering, 2013, 41(1):131-141.
[48] Zurbuchen A, Haeberlin A, Pfenniger A, et al. Towards batteryless cardiac implantable electronic devices-The Swiss way[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(1):78-86.
[49] Cinquin P, Gondran C, Giroud F, et al. A glucose biofuel cell implanted in rats[J]. PLoS One, 2010, 5(5):e10476.
[50] Olivo J, Carrara S, de Micheli G. Energy harvesting and remote powering for implantable biosensors[J]. IEEE Sensors Journal, 2011, 11(7):1573-1586.
[51] Sun L, Cheng C L, Wang S, et al. Bioinspired, nanostruc-ture-amplified, subcutaneous light harvesting to power implantable biomedical electronics[J]. ACS Nano, 2021, 15(8):12475-12482.
[52] Liu Z, Zheng Q, Shi Y, et al. Flexible and stretchable dual mode nanogenerator for rehabilitation monitoring and information interaction[J]. Journal of Materials Chemistry B, 2020, 8(16):3647-3654.
[53] Yang W Q, Chen J, Zhu G, et al. Harvesting energy from the natural vibration of human walking[J]. ACS Nano, 2013, 7(12):11317-11324.
[54] Meng X S, Zhu G, Wang Z L. Robust thin-film generator based on segmented contact-electrification for harvesting wind energy[J]. ACS Applied Materials & Inter-faces, 2014, 6(11):8011-8016.
[55] Zhu G, Su Y J, Bai P, et al. Harvesting water wave energy by asymmetric screening of electrostatic charges on a nanostructured hydrophobic thin-film surface[J]. ACS Nano, 2014, 8(6):6031-6037.
[56] Bhatta T, Maharjan P, Salauddin M, et al. A batteryless arbitrary motion sensing system using magnetic repulsion-based self-powered motion sensors and hybrid nanogen-erator[J]. Advanced Functional Materials, 2020, 30(36):2003276.
[57] Li X D, Li Y, Zhang M J, et al. Carbon nano thorn ar-rays based water/cold resisted nanogenerator for wind en-ergy harvesting and speed sensing[J]. Nano Energy, 2021, 90:106571.
[58] Tan P C, Han X, Zou Y, et al. Self-powered gesture recognition wristband enabled by machine learning for full keyboard and multicommand input[J]. Advanced Materials, 2022, 34(21):e2200793.
[59] Wang C, Qu X C, Zheng Q, et al. Stretchable, self-healing, and skin-mounted active sensor for multipoint muscle function assessment[J]. ACS Nano, 2021, 15(6):10130-10140.
[60] Li Z, Feng H Q, Zheng Q, et al. Photothermally tunable biodegradation of implantable triboelectric nanogenera-tors for tissue repairing[J]. Nano Energy, 2018, 54:390-399.
[61] Lu Y F, Li H S, Wang J, et al. Engineering bacteria-activated multifunctionalized hydrogel for promoting diabetic wound healing[J]. Advanced Functional Materials, 2021, 31(48):2105749.
[62] Ouyang H, Liu Z, Li N, et al. Symbiotic cardiac pace-maker[J]. Nature Communications, 2019, 10:1821.
[63] Luo R Z, Dai J Y, Zhang J P, et al. Accelerated skin wound healing by electrical stimulation[J]. Advanced Healthcare Materials, 2021, 10(16):e2100557.
[64] Yu B, Qiao Z G, Cui J J, et al. A host-coupling bionanogenerator for electrically stimulated osteogenesis[J]. Biomaterials, 2021, 276:120997.
[65] Li Z, Zhu G A, Yang R S, et al. Muscle-driven in vivo nanogenerator[J]. Advanced Materials, 2010, 22(23):2534-2537.
[66] Zhao L M, Li H, Meng J P, et al. Combining triboelectric nanogenerator with piezoelectric effect for optimizing Schottky barrier height modulation[J]. Science Bulle-tin, 2021, 66(14):1409-1418.
[67] Jin C R, Dong L, Xu Z, et al. Skin-like elastomer embedded zinc oxide nanoarrays for biomechanical energy harvesting[J]. Advanced Materials Interfaces, 2021, 8(10):2100094.
[68] Dagdeviren C, Yang B D, Su Y W, et al. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5):1927-1932.
[69] Dong L, Closson A B, Oglesby M, et al. In vivo cardiac power generation enabled by an integrated helical piezo-electric pacemaker lead[J]. Nano Energy, 2019, 66:104085.
[70] Dong L, Closson A B, Jin C R, et al. Multifunctional pacemaker lead for cardiac energy harvesting and pres-sure sensing[J]. Advanced Healthcare Materials, 2020, 9(11):e2000053.
[71] Dong L, Wen C S, Liu Y, et al. Piezoelectric buckled beam array on a pacemaker lead for energy harvesting[J]. Advanced Materials Technologies, 2019, 4(1):1800335.
[72] Xu Z, Jin C R, Cabe A, et al. Flexible energy harvester on a pacemaker lead using multibeam piezoelectric com-posite thin films[J]. ACS Applied Materials & Interfaces, 2020, 12(30):34170-34179.
[73] Azimi S, Golabchi A, Nekookar A, et al. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant[J]. Nano Energy, 2021, 83:105781.
[74] Zheng Q, Shi B J, Fan F R, et al. In vivo powering of pacemaker by breathing-driven implanted triboelectric nanogenerator[J]. Advanced Materials, 2014, 26(33):5851-5856.
[75] Ryu H, Park H M, Kim M K, et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenera-tors[J]. Nature Communications, 2021, 12:4374.
[76] Ma Y, Zheng Q, Liu Y, et al. Self-powered, one-stop, and multifunctional implantable triboelectric active sen-sor for real-time biomedical monitoring[J]. Nano Letters, 2016, 16(10):6042-6051.
[77] Zhao D N, Zhuo J T, Chen Z T, et al. Eco-friendly in situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities[J]. Nano Energy, 2021, 90:106580.
[78] Zheng Q, Zhang H, Shi B J, et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator[J]. ACS Nano, 2016, 10(7):6510-6518.
[79] Kim D H, Shin H J, Lee H, et al. In vivo self-powered wireless transmission using biocompatible flexible energy harvesters[J]. Advanced Functional Materials, 2017, 27(25):1700341.
[80] Li J, Hacker T A, Wei H, et al. Long-term in vivo opera-tion of implanted cardiac nanogenerators in swine[J]. Na-no Energy, 2021, 90:106507.
[81] Liu Z, Ma Y, Ouyang H, et al. Transcatheter self-pow-ered ultrasensitive endocardial pressure sensor[J]. Ad-vanced Functional Materials, 2019, 29(3):1807560.
[82] Ouyang H, Li Z, Gu M, et al. A bioresorbable dynamic pressure sensor for cardiovascular postoperative care[J]. Advanced Materials, 2021, 33(39):e2102302.
[83] Hwang G T, Park H, Lee J H, et al. Self-powered cardiac pacemaker enabled by flexible single crystalline PMN-PT piezoelectric energy harvester[J]. Advanced Materials, 2014, 26(28):4880-4887.
[84] Choi Y S, Yin R T, Pfenniger A, et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries[J]. Nature Biotechnology, 2021, 39(10):1228-1238.
[85] Sun Y, Chao S Y, Ouyang H, et al. Hybrid nanogenera-tor based closed-loop self-powered low-level vagus nerve stimulation system for atrial fibrillation treatment[J]. Science Bulletin, 2022, 67(12):1284-1294.