[1] 杨璐瑛, 刘畅, 杨成芳, 等. 不同天气系统影响下强降雨过程GPS可降水量变化特征对比[J]. 干旱气象, 2018, 36(3): 475-482.
[2] Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system[J]. Journal of Geophysical Research, 1992, 97(D14): 15787-15801.
[3] Rocken C, Ware R, Van Hove T, et al. Sensing atmospheric water vapor with the global positioning system[J]. Geophysical Research Letters, 1993, 20(23): 2631-2634.
[4] Emardson T R, Elgered G, Johansson J M. Three months of continuous monitoring of atmospheric water vapor with a network of GPS receivers[J]. Journal of Geophysical Research, 1998, 103(D2): 1807-1820.
[5] Baker H C, Dodson A H, Penna N T, et al. Groundbased GPS water vapour estimation: Potential for meteorological forecasting[J]. Journal of Atmospheric and SolarTerrestrial Physics, 2001, 63(12): 1305-1314.
[6] Gradinarsky L P, Johansson J M, Bouma H R, et al. Climate monitoring using GPS[J]. Physics and Chemistry of the Earth, 2002, 27(4): 335-340.
[7] 楚艳丽, 郭英华, 张朝林, 等. 地基GPS水汽资料在北京 “7.10” 暴雨过程研究中的应用[J]. 气象, 2007, 33(12): 16-22.
[8] 李国翠, 李国平, 连志鸾, 等. 不同云系降水过程中GPS可降水量的特征——华北地区典型个例分析[J]. 高原气象, 2008, 27(5): 1066-1073.
[9] 郭洁, 李国平, 黄文诗, 等. 不同类型降雨过程中GPS可降水量的特征分析[J]. 水科学进展, 2009, 20(6): 763- 768.
[10] Chen J N, Li G P. Diurnal variations of ground-based GPS-PWV under different solar radiation intensity in the Chengdu Plain[J]. Journal of Geodynamics, 2013, 72: 81-85.
[11] Choy S, Wang C, Zhang K, et al. GPS sensing of precipitable water vapour during the March 2010 Melbourne storm[J]. Advances in Space Research, 2013, 52(9): 1688-1699.
[12] 石小龙, 尚伦宇, 尹远渊, 等. 大连地区GPS反演大气可降水量的变化特征[J]. 高原气象, 2014, 33(6): 1648- 1653.
[13] 周长艳, 唐信英, 邓彪. 一次四川特大暴雨灾害降水特征及水汽来源分析[J]. 高原气象, 2015, 34(6): 1636- 1647.
[14] 马思琪, 周顺武, 王烁, 等. 基于GPS资料分析西藏中东部夏季可降水量日变化特征[J]. 高原气象, 2016, 35(2): 318-328.
[15] 曹云昌, 方宗义, 李成才, 等. 利用GPS和云图资料监测北京地区中小尺度降水的研究[J]. 高原气象, 2005, 24(1): 91-96.
[16] 王留朋, 白征东, 过静, 等. 利用地基GPS-PWV序列和相对湿度RH序列研究暴雨过程[J]. 测绘科学, 2007, 32(3): 142-198.
[17] 陈娇娜, 李国平, 黄文诗,等. 华西秋雨天气过程中GPS遥感水汽总量演变特征[J]. 应用气象学报, 2009, 20(6): 753-760.
[18] 丁海燕, 李青春, 郑祚芳, 等. 利用北京GPS监测网分析夏季暴雨的水汽特征[J]. 应用气象学报, 2012, 23(1): 47-58.
[19] 张振东, 魏鸣, 王皓. 用GPS水汽监测资料分析一次强对流性降水过程[J]. 气象科学, 2013, 33(5): 492-499.
[20] 郑永光, 周康辉, 盛杰, 等. 强对流天气监测预报预警技术进展[J]. 应用气象学报, 2015, 26(6): 641-657.
[21] Smith T L, Benjamin S G, Shwartz B E, et al. Using GPS-PWV in a 4-D data assimilation system[J]. Earth Plants Space, 2000, 52: 921-926.
[22] De Pondeca M, Zou X. A case study of the variational assimilation of GPS zenith delay observations into a mesoscale model[J]. Journal of Applied Meteorology, 2001, 40: 1559-1576.
[23] Barker D M, Huang W, Guo Y, et al. A three-dimensional variational data assimilation system for MM5: Implementation and initial results[J]. Monthly Weather Review, 2004, 132: 897-914.
[24] 万蓉, 郑国光. 地基GPS在暴雨预报中的应用进展[J]. 气象科学, 2008, 28(6): 697-702.
[25] 陈敏, 范水勇, 仲跻芹, 等. 全球定位系统的可降水量资料在北京地区快速更新循环系统中的同化试验[J]. 气象学报, 2010, 68(4): 450-463.
[26] 赵润华, 李跃春, 沈宏彬. GPS可降水量与掩星折射率资料同化对暴雨模拟的影响[J]. 高原山地气象研究, 2013, 33(2): 24-29.
[27] 张晶, 顾松山,楚志刚, 等. LAPS同化GPS/PWV资料在暴雨预报中的应用研究[J]. 气象, 2014, 40(1): 76-85.
[28] 李昊睿, 丁伟钰, 薛纪善, 等. 广东省GPS/PWV资料的质量控制及其对前汛期降水预报影响的初步研究[J]. 热带气象学报, 2014, 30(3): 455-462.
[29] 贝纯纯, 李昕, 王元, 等. GPS/PWV资料在梅雨锋暴雨个例中的同化试验[J]. 气象科学, 2016, 36(2): 149- 157.
[30] 何志新, 江杨, 张苏, 等. 同化GPS可降水量资料在安徽地区暴雨预报中的应用[J]. 气象与环境学报, 2017, 33(2): 18-27.
[31] Bevis M, Busingor S, Chiswell S, et al. GPS Meteorology: Mapping zenith wet delays onto precipitable water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386.
[32] Li M, Li W W, Shi C, et al. Assessment of precipitable water vapor derived from ground-based BeiDou observations with Precise Point Positioning approach[J]. Advances in Space Research, 2015, 55(1): 150-162.
[33] Snoun H, Kanfoudi H, Bellakhal G, et al. Validation and sensitivity analysis of the WRF mesoscale model PBL schemes over Tunisia using dynamical downscaling approach[J]. Euro-Mediterranean Journal for Environmental Integration, 2019, 4(1): 1-10.
[34] Onwukwe C, Jackson P L. Meteorological downscaling with wrf model, version 4.0, and comparative evaluation of planetary boundary layer schemes over a complex coastal airshed[J]. Journal of Applied Meteorology and Climatology, 2020, 59(8): 1295-1319.
[35] He J, Loboda T V. Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method[J]. Environmental Research Letters, 2020, 15(11): 115009.
[36] Shenoy M, Raju P V S, Prasad J. Optimization of physical schemes in WRF model on cyclone simulations over Bay of Bengal using one-way ANOVA and Tukey's test [J]. Scientific Reports, 2021, 11(1): 1-9.