Papers

An age assessment model for maturity of city brain development maturity

  • LIU Feng ,
  • LIU Ying
Expand
  • 1. Research Center on Fictitious Economy and Data Science, Chinese Academy of Sciences, Beijing 100190, China;
    2. Techxcope Digital Brain Institute, Beijing 100080, China;
    3. Tianfu Institute of International Big Data Strategy and Technology, Chengdu 610218, China;
    4. School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China

Received date: 2022-06-08

  Revised date: 2022-07-20

  Online published: 2022-09-02

Abstract

This paper suggests that the city brain is the product of the evolution of the Internet from a mesh to a brain-like architecture since the 21st century and it is combined with the construction of smart cities. Through a comparison with the developmental process of the biological brains, an age assessment model of the maturity of the city brain development is established。 With the evaluation model, the various age groups are first identified through the unified planning scope of the urban brain. The District and the County correspond to 0-5 years old (children level), the City corresponds to 6-11 years old (children level), and the Province corresponds to 12-17 years old (juvenile level) , the Country corresponds to 18-23 year old (youth level), and the world corresponds to 24-29 years old (adult level).Then with the evaluation model, the construction quality is evaluated from six aspects: the problem solving, the digital neuron, the cloud reflex arc, the cost performance, the safety, and the integrity. After the evaluation value is converted into an age increment, it is added to the minimum value of the age group to form the developmental age of the city brain.

Cite this article

LIU Feng , LIU Ying . An age assessment model for maturity of city brain development maturity[J]. Science & Technology Review, 2022 , 40(14) : 80 -91 . DOI: 10.3981/j.issn.1000-7857.2022.14.009

References

[1] 邹俊燕, 徐明慧, 庞晓静. 城市大脑发展现状、 典型实践与路径建议[J]. 信息通信技术与政策, 2021(11): 6-13.
[2] 王强, 田涛, 刘昕昀. 软件测试能力评定模型研究[J]. 计算机技术与发展, 2018, 28(8): 75-79.
[3] 市川芳明. 智慧社区基础设施标准化[J]. 中国标准化, 2014(3): 79-82.
[4] 刘文, 邵泽华, 李赟, 等. 智慧城市成熟度模型及评估方法研究[J]. 信息技术与标准化, 2020(7): 17-21.
[5] 刘峰. 互联网进化论: 破解互联网的奥秘[M]. 北京: 清华大学出版社, 2012.
[6] Liu F. City cloud brain, a new architecture of smart city based on the internet cloud brain[C/OL]. [2022-05-31]. https://arxiv.org/ftp/arxiv/papers/1710/1710.04123.pdf.
[7] 刘锋. 城市大脑的起源、 建设与未来[M]. 北京: 清华大学出版社, 2022.
[8] 城市大脑全球标准研究报告[R]. 北京: 中国科学院虚拟经济与数据科学研究中心, 2020.
[9] 刘锋. 崛起的超级智能:互联网大脑如何影响科技未来[M]. 北京: 中信出版社, 2019.
[10] 刘锋. 城市大脑的起源、 发展与未来趋势[J]. 人民论坛· 学术前沿, 2021(9): 82-95.
[11] 王小红. 智慧城市理念与未来城市发展[J]. 科技创新与应用, 2016(13): 72.
[12] 李云庆. 神经科学基础[M]. 2版 . 北京: 高等教育出版社, 2010.
[13] 刘锋, 乔蓓蓓. 城市大脑与智慧城市的关系问题探讨[J]. 中国建设信息化, 2021(18): 58-60.
[14] 约翰·C. 埃克尔斯. 脑的进化自我意识的创生[M]. 潘泓 译.上海: 上海科技教育出版社, 2007.
[15] 李旻. 智慧政府数字治理水平与城市可持续发展能力相关性应用[J]. 数字技术与应用, 2022, 40(3): 1-4, 10.
[16] Lam E. Sidewalk Toronto[J]. Canadian Architect, 2019, 64(1): 6.
[17] 张想想, 卫莹. 铜陵: 运转“超级大脑” 演绎城市未来[J]. 江淮, 2020(6): 16-17.
[18] 陈云. 杭州“城市大脑” 的治理模式创新与实践启示[J]. 国家治理, 2021(17): 16-21.
[19] 郏文纲, 马跃明, 岑文华, 等. 重大集成创新的硬核改革: 浙江推进数字化改革综述[J]. 今日浙江, 2021(3): 13-19.
[20] 2022城市大脑建设标准研究报告[R]. 北京: 中国科学院虚拟经济与数据科学研究中心, 2022.
Outlines

/