Exclusive:Air pollution and health

Research progress of new observation techniques for atmospheric composite pollution

  • WANG Xiaofei ,
  • WANG Lin ,
  • CHEN Jianmin
Expand
  • Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China

Received date: 2021-10-23

  Revised date: 2022-04-25

  Online published: 2022-09-13

Supported by

 

Abstract

Air pollution consists of a large number of pollutants,which usually have complicated sources and aging pathways.There are interactions among these pollutant species,thereby forming so called combined pollution.To study the formation mechanism and control technology for air pollution,it is necessary to measure the concentrations of major pollutants in the air.However,ultrafine aerosol particles,organic aerosols and volatile organic compounds are especially difficult to detect.This paper introduces the new technologies and methods for measuring air pollutants.Specifically,the recently developed methods for measuring ultrafine aerosol particle formation,volatile organic compounds,and particulate organics are discussed in detail.Besides,a short review of other widely used monitoring methods is also included.

Cite this article

WANG Xiaofei , WANG Lin , CHEN Jianmin . Research progress of new observation techniques for atmospheric composite pollution[J]. Science & Technology Review, 2022 , 40(15) : 33 -40 . DOI: 10.3981/j.issn.1000-7857.2022.15.004

References

[1] Seinfeld J H, Pandis S N. Atmospheric chemistry and physics:From air pollution to climate change[M]. New Jersey:Wiley, 2016.
[2] Loris N. EPA formally declares CO2 a dangerous pollutant[EB/OL].[2021-09-01]. https://www.dailysignal.com/2009/12/07/epa-formally-declares-co2-a-dangerous-pollutant/.
[3] 张小曳,孙俊英,王亚强,等.我国雾-霾成因及其治理的思考[J].科学通报, 2013, 58(13):1178-1187.
[4] Huang R J, Zhang Y, Bozzetti C, et al. High secondary aerosol contribution to particulate pollution during haze events in China[J]. Nature, 2014, 514(7521):218-222.
[5] Fu H, Chen J. Formation, features and controlling strategies of severe haze-fog pollutions in China[J]. Science of the Total Environment, 2017, 578:121-138.
[6] Huang X, Ding A J, Wang Z L, et al. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China[J]. Nature Geoscience, 2020, 13(6):428-434.
[7] Wang X F, Zhang Y P, Chen H, et al. Particulate nitrate formation in a highly polluted urban area:A case study by single-particle mass spectrometry in Shanghai[J]. Environmental Science&Technology, 2009, 43(9):3061-3066.
[8] 吴兑.近十年中国灰霾天气研究综述[J].环境科学学报, 2012, 32(2):257-269.
[9] 王志彬,胡敏,吴志军,等.大气新粒子生成机制的研究[J].化学学报, 2013, 71(4):519-527.
[10] Yao L, Garmash O, Bianchi F, et al. Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity[J]. Science, 2018, 361(6399):278-281.
[11] Kirkby J, Curtius J, Almeida J, et al. Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation[J]. Nature, 2011, 476(7361):429-433.
[12] Kulkarni P, Baron P A, Willeke K. Aerosol measurement:Principles, techniques, and applications[M]. New Jersey:Wiley, 2011:41-54.
[13] Kangasluoma J, Hering S, Picard D, et al. Characterization of three new condensation particle counters for sub-3 nm particle detection during the Helsinki CPC workshop:The ADI versatile water CPC, TSI 3777 nano enhancer and boosted TSI 3010[J]. Atmospheric Measurement Techniques, 2017, 10(6):2271-2281.
[14] Rosser S, de la Mora J F. Vienna-type DMA of high resolution and high flow rate[J]. Aerosol Science and Technology, 2005, 39(12):1191-1200.
[15] de la Mora J F, Perez-Lorenzo L J, Arranz G, et al. Fast high-resolution nanoDMA measurements with a 25ms response time electrometer[J]. Aerosol Science and Technology, 2017, 51(6):724-734.
[16] de la Mora J F, Kozlowski J. Hand-held differential mobility analyzers of high resolution for 1-30 nm particles:Design and fabrication considerations[J]. Journal of Aerosol Science, 2013, 57:45-53.
[17] Zhang S H, Akutsu Y, Russell L M, et al. RADIAL differential mobility analyzer[J]. Aerosol Science and Technology, 1995, 23(3):357-372.
[18] Vanhanen J, Mikkilä J, Lehtipalo K, et al. Particle size magnifier for nano-CN detection[J]. Aerosol Science and Technology, 2011, 45(4):533-542.
[19] Junninen H, Ehn M, Petäjä T, et al. A high-resolution mass spectrometer to measure atmospheric ion composition[J]. Atmospheric Measurement Techniques, 2010, 3(4):1039-1053.
[20] Hallquist M, Wenger J C, Baltensperger U, et al. The formation, properties and impact of secondary organic aerosol:Current and emerging issues[J]. Atmospheric Chemistry and Physics, 2009, 9(14):5155-5236.
[21] Jayne J T, Leard D C, Zhang X, et al. Development of an aerosol mass spectrometer for size and composition analysis of submicron particles[J]. Aerosol Science and Technology, 2000, 33(1/2):49-70.
[22] Williams B J, Goldstein A H, Kreisberg N M, et al. An in-situ instrument for speciated organic composition of atmospheric aerosols:Thermal desorption aerosol GC/MS-FID (TAG)[J]. Aerosol Science and Technology,2006, 40(8):627-638.
[23] An Z J, Ren H X, Xue M, et al. Comprehensive two-dimensional gas chromatography mass spectrometry with a solid-state thermal modulator for in-situ speciated measurement of organic aerosols[J]. Journal of Chromatography A, 2020, 1625:461336.
[24] Gallimore P J, Kalberer M. Characterizing an extractive electrospray ionization (EESI) source for the online mass spectrometry analysis of organic aerosols[J]. Environmental Science&Technology, 2013, 47(13):7324-7331.
[25] 姜鸿兴,李军,唐娇,等.高分辨质谱技术在大气棕色碳研究中的应用[J].分析化学, 2018, 46(10):1528-1538.
[26] Wang X F, Sultana C M, Trueblood J, et al. Microbial control of sea spray aerosol composition:A tale of two blooms[J]. ACS Central Science, 2015, 1(3):124-131.
[27] Fu H B, Wang X, Wu H B, et al. Heterogeneous uptake and oxidation of SO 2 on iron oxides[J]. The Journal of Physical Chemistry C, 2007, 111(16):6077-6085.
[28] Bondy A L, Kirpes R M, Merzel R L, et al. Atomic force microscopy-infrared spectroscopy of individual atmospheric aerosol particles:Subdiffraction limit vibrational spectroscopy and morphological analysis[J]. Analytical Chemistry, 2017, 89(17):8594-8598.
[29] 蒋美青,陆克定,苏榕,等.我国典型城市群O3污染成因和关键VOCs活性解析[J].科学通报, 2018, 63(12):1130-1141.
[30] 罗玮,王伯光,刘舒乐,等.广州大气挥发性有机物的臭氧生成潜势及来源研究[J].环境科学与技术, 2011, 34(5):80-86.
[31] 魏巍.中国人为源挥发性有机化合物的排放现状及未来趋势[D].北京:清华大学, 2009.
[32] 展先辉,仝东超,邵艳珊,等.挥发性有机物采样方法的综合评价[J].天津理工大学学报, 2015, 31(4):61-64.
[33] Ma C M, Ruan R T. Adsorption of toluene on mesoporous materials from waste solar panel as silica source[J]. Applied Clay Science, 2013, 80:196-201.
[34] Yuan B, Koss A R, Warneke C, et al. Proton-transferreaction mass spectrometry:Applications in atmospheric sciences[J]. Chemical Reviews, 2017, 117(21):13187-13229.
[35] Ehn M, Thornton J A, Kleist E, et al. A large source of low-volatility secondary organic aerosol[J]. Nature, 2014, 506(7489):476-479.
[36] Kirkby J, Duplissy J, Sengupta K, et al. Ion-induced nucleation of pure biogenic articles[J]. Nature, 2016, 533(7604):521-526.
[37] Tröstl J, Chuang W K, Gordon H, et al. The role of lowvolatility organic compounds in initial particle growth in the atmosphere[J]. Nature, 2016, 533(7604):527-531.
[38] Lee B H, Lopez-Hilfiker F D, Mohr C, et al. An iodideadduct high-resolution time-of-flight chemical-ionization mass spectrometer:Application to atmospheric inorganic and organic compounds[J]. Environmental Science&Technology, 2014, 48(11):6309-6317.
[39] Berndt T, Richters S, Jokinen T, et al. Hydroxyl radicalinduced formation of highly oxidized organic compounds[J]. Nature communications, 2016, 7(1):1-8.
[40] Hansel A, Scholz W, Mentler B, et al. Detection of RO2 radicals and other products from cyclohexene ozonolysis with NH 4+and acetate chemical ionization mass spectrometry[J]. Atmospheric Environment, 2018, 186:248-255.
[41] Yao L, Wang M Y, Wang X K, et al. Detection of atmospheric gaseous amines and amides by a high-resolution time-of-flight chemical ionization mass spectrometer with protonated ethanol reagent ions[J]. Atmospheric Chemistry and Physics, 2016, 16(22):14527-14543.
[42] 田晓敏,刘东,徐继伟,等.大气探测激光雷达技术综述[J].大气与环境光学学报, 2018, 13(5):321-341.
[43] Verhoelst T, Compernolle S, Pinardi G, et al. Groundbased validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks[J]. Atmospheric Measurement Techniques, 2021, 14(1):481-510.
[44] Manisalidis I, Stavropoulou E, Stavropoulos A, et al. Environmental and health impacts of air pollution:A review[J]. Frontiers in Public Health, 2020, 8:14.
[45] Lee M L, Novotny M, Bartle K D. Gas chromatography/mass spectrometric and nuclear magnetic resonance spectrometric studies of carcinogenic polynuclear aromatic hydrocarbons in tobacco and marijuana smoke condensates[J]. Analytical Chemistry, 1976, 48(2):405-416.
[46] Zheng W, Reponen T, Grinshpun S A, et al. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection[J]. Journal of Aerosol Science, 2001, 32(5):661-674.
[47] Pasquarella C, Pitzurra O, Savino A. The index of microbial air contamination[J]. Journal of Hospital Infection, 2000, 46(4):241-256.
[48] Sánchez-Monedero M A, Stentiford E I. Generation and dispersion of airborne microorganisms from composting facilities[J]. Process Safety and Environmental Protection, 2003, 81(3):166-170.
[49] Henningson E W, Ahlberg M S. Evaluation of microbiological aerosol samplers:A review[J]. Journal of Aerosol Science, 1994, 25(8):1459-1492.
[50] Brock T D. How sensitive is the light microscope for observations on microorganisms in natural habitats?[J]. Microbial Ecology, 1984, 10(4):297-300.
[51] Zare R N. My life with LIF:A personal account of developing laser-induced fluorescence[J]. Annual Review of Analytical Chemistry, 2012, 5(1):1-14.
[52] Bakand S, Hayes A. Troubleshooting methods for toxicity testing of airborne chemicals in vitro[J]. Journal of Pharmacol Toxicol Methods, 2010, 61(2):76-85.
Outlines

/