Reviews

Research progress on crack self-healing technology of cement-based materials based on microorganism

  • WANG Hailiang ,
  • CHEN Cang ,
  • RONG Hui ,
  • LI Ying ,
  • CHEN Yuting ,
  • ZHANG Ying ,
  • ZHANG Jinrui ,
  • WANG Jianyun
Expand
  • 1. School of Civil Engineering, Tianjin Chengjian University, Tianjin 300384, China;
    2. School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300384, China;
    3. Tianjin Key Laboratory of Building Green Functional Materials, Tianjin Chengjian University, Tianjin 300384, China;
    4. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China;
    5. School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China

Received date: 2020-06-11

  Revised date: 2021-10-14

  Online published: 2022-09-13

Supported by

 

Abstract

Microbial self-healing of cement-based material cracks has gained extensive attention due to its great healing potential and environmental-friendly characteristics.In this paper,we systematically introduce the development of crack selfhealing of cement-based materials based on microorganism,the mechanism of microbial induced mineralization precipitation crystallization,induced mineralization yield and its influencing factors,immobilization of microorganism and determination of mineralization activity after immobilization,crack making method and self-healing condition,characterization method of selfhealing effect,crack self-healing effect,and the performance of microbial self-healing agent on cement-based materials.Meanwhile,we point out some main problems in the research of microbial self-healing cement-based materials and prospect its future,so as to provide reference for subsequent researchers to carry out related research.

Cite this article

WANG Hailiang , CHEN Cang , RONG Hui , LI Ying , CHEN Yuting , ZHANG Ying , ZHANG Jinrui , WANG Jianyun . Research progress on crack self-healing technology of cement-based materials based on microorganism[J]. Science & Technology Review, 2022 , 40(15) : 90 -103 . DOI: 10.3981/j.issn.1000-7857.2022.15.009

References

[1] 刘小艳,姚武,郑晓芳,等.混凝土损伤自愈合性能的试验研究[J].建筑材料学报, 2005, 8(2):184-188.
[2] 张鹏,冯竟竟,陈伟,等.混凝土损伤自修复技术的研究与进展[J].材料导报, 2018, 32(10):3375-3386.
[3] 程东辉,潘洪涛.混凝土裂缝自动愈合机理研究[J].森林工程, 2005, 21(3):53-54.
[4] 李军,吕子义,邓初晴.水下混凝土裂缝修补技术的进展[J].新型建筑材料, 2007(10):9-12.
[5] 黄微波,李晶,高金岗.混凝土结构裂缝修复技术研究进展[J].工业建筑, 2014, 44(增刊1):934-937.
[6] 石晓东,何欢,梁瑞华,等.不同条件下的水泥基材料自然自愈合性能研究[J].混凝土与水泥制品, 2019(6):5-8, 28.
[7] 吕忠,陈惠苏.水泥基材料裂缝自主愈合研究进展[J].硅酸盐学报, 2014, 42(2):156-168.
[8] 练继建,高毛毛,闫玥,等.基于MICP技术的自修复混凝土研究进展[J].南水北调与水利科技, 2019, 17(1):164-176.
[9] 王燚,李振国,罗兴国.混凝土裂缝的修复技术简述[J].混凝土, 2006(3):91-93.
[10] 唐禄博,张华玮,赵慷慨,等.一种包含微生物胶囊能够持续自修复的地铁工程混凝土:106746942A[P]. 2017-05-31.
[11] 祁红梅,朱丽娟,姚博.混凝土裂缝修复技术探析[J].徐州建筑职业技术学院学报, 2009, 9(4):33-35.
[12] 蒋元驹,韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社, 1996:454-493.
[13] Rooij M D, Tittelboom K V, Belie N D, et al. Self-healing phenomena in cement-based materials[C]. Draft of State-of-the-Art report of RILEM Technical Committee, 2011.
[14] 匡亚川,欧进萍.混凝土裂缝的仿生自修复研究与进展[J].力学进展, 2006, 36(3):406-414.
[15] Boquet E, Boronat A, Ramos C A. Production of calcite (calcium carbonate) crystals by soil bacteria is a common phenomenon[J]. Nature, 1973, 45:527.
[16] Santosh K, Ramachandran S K, Ramakrishnan V, et al. Remediation of concrete using microorganisms[J]. Journal of the American Concrete Institute, 2001, 98:3-9.
[17] Jonkers H M, Schlangen E. Crack repair by concrete-immobilized bacteria[C]//Proceedings of the First International Conference on Self-healing Materials. Berlin:Springer, 2007:18-20.
[18] Muynck W D, Belie N D, Verstraete W. Microbial carbonate precipitation in construction materials:A review[J]. Ecological Engineering, 2010, 36(2):118-136.
[19] Jonhkers H M. Self healing concrete:A biological approach[C]//van der Zwaag S. Self healing materials:An alternative approach to 20 centuries of materials science. Dordrecht:Springer, 2007:195-204.
[20] 钱春香,李瑞阳,潘庆峰,等.混凝土裂缝的微生物自修复效果[J].东南大学学报, 2013, 43(2):360-364.
[21] Tziviloglou E, Tittelboom K V, Palin D, et al. Bio-based self-healing concrete:From research to field application[M]//Hager M D, van der Zwaag S, Schubert U S. Advances in polymer science. Dordrecht:Springer, 2016:345-385.
[22] Ehrlich H L, Newman D K, Kappler A. Geomicrobiology[M]. New York:CRC Press, 2015.
[23] 任立夫,钱春香.碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J].硅酸盐学报, 2014, 42(11):1389-1395.
[24] Qian C, Chen H, Ren L, et al. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism[J]. Frontiers in Microbiology, 2015, 6:314.
[25] 徐晶,姚武.微生物非脲解作用诱导碳酸钙沉积研究[J].同济大学学报, 2013, 41(10):1543-1545.
[26] Miller A. Collagen:The organic matrix of bone[J]. Philosophical Transactions Royal Society Biological Sciences, 1984, 304:455-477.
[27] Mana S. Biomineralization:Principles and concepts in bioinorganic materials chemistry[M]. UK:Oxford University Press, 2001.
[28] Willem D M, Nele D B, Willy V. Microbial carbonate precipitation in construction materials:A receive[J]. Ecological Engineering, 2010, 36:118-136.
[29] Plummer L N, busenberg E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochim Cosmochim Ac, 1982, 46(6):1011.
[30] Spanos N, Koutsoukos P G. The transformation of vaterite to calcite:Effect of the conditions of the solutions in contact with the mineralphase[J]. Journal of Crystal Growth, 1998, 191(4):783.
[31] Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite[J]. Geochim Cosmochim Ac, 2007, 71(5):1197.
[32] 王瑞兴,钱春香,王剑云.微生物沉积碳酸钙研究[J].东南大学学报, 2005, 35:192-195.
[33] 钱春香,王剑云,王瑞兴,等.微生物沉积方解石的产率[J].硅酸盐学报, 2006, 34(5):619-621.
[34] 王绪民,郭伟,余飞,等.营养盐浓度对胶结砂试样物理力学特性试验研究[J].岩土力学, 2016, 37:364-374.
[35] 彭劼,冯清鹏,孙益成.温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J].岩土工程学报, 2018, 40(6):1049-1055.
[36] Wang J Y, De B N, Verstraete W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J]. Journal of Industrial Microbiology&Biotechnology, 2012, 39:567-577.
[37] Jonkers H M, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2):230-235.
[38] Xu J, Wang X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material[J]. Construction and Building Materials, 2018, 167(10):1-14.
[39] 徐晶,王彬彬.陶粒负载微生物的混凝土开裂自修复研究[J].材料导报, 2017, 31(7):127-131.
[40] 李珠,冯涛,周梦君,等.基于科式芽孢杆菌矿化沉积的混凝土裂缝自修复性能试验研究[J].混凝土, 2017, 6:5-8.
[41] Alazhari M, Sharma T, Heath A, et al. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete[J]. Construction and Building Materials, 2018, 160(30):610-619.
[42] Wang J, van Tittelboom K, de Belie N, et al. Use of silica gel or polyurethane immobilized bacteria for selfhealing concrete[J]. Construction and Building Materials, 2012, 26(1):532-540.
[43] Wang J Y, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56:139-152.
[44] Dong B, Wang Y, Fang G, et al. Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution[J]. Cement and Concrete Composites, 2015, 56:46-50.
[45] Wikor V, Jonkers H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33:763-770.
[46] Xu J, Wang X, Zuo J, et al. Self-healing of concrete cracks by ceramsite-loaded microorganisms[J]. Advances in Materials Science and Engineering, 2018, 2018:5153041.
[47] Khaliq W, Ehsan M B. Crack healing in concrete using various bio influenced self-healing techniques[J]. Construction and Building Materials, 2016, 102:349-357.
[48] Wang J Y, Snoeck D S, Van Vlierberghe S V, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J]. Construction and Building Materials, 2014, 68:110-119.
[49] 王剑云,钱春香,王瑞兴,等.海藻酸钠固载菌株在水泥基材料表面防护中的应用研究[J].功能材料, 2009, 40(2):348-351.
[50] Luo M, Qian C X, Li R Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2015, 87:1-7.
[51] 李瑞阳.微生物修复混凝土裂缝的影响因素及机理[D].南京:东南大学, 2014.
[52] Van Tittelboom K, De Belie N, De Muynck W, et al. Use of bacteria to repair cracks in concrete[J]. Cement and Concrete Research, 2010, 40(1):157-166.
[53] Siddique R, Singh K, Kunal V, et al. Properties of bacterial rice husk ash concrete[J]. Construction and Building Materials, 2016, 121:112-119.
[54] Chahal N, SiddiQUE R, Rajor A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume[J]. Construction and Building Materials, 2012, 37:645-651.
[55] Aggelis D G, Leonidou E, Matikas T E. Subsurface crack determination by one-sided ultrasonic measurements[J]. Cement and Concrete Research, 2012, 34(2):140-146.
[56] 李俊如,高建光,王耀辉.超声波检测混凝土裂缝及裂缝成因分析[J].岩土力学, 2001, 22(3):291-293.
[57] 窦继民.大体积混凝土结构裂缝检测与分析[D].南京:河海大学, 2005.
[58] 姚武,钟文慧.混凝土损伤自愈的机理[J].材料研究学报, 2006, 20(1):24-28.
[59] 张科强,杨波.混凝土的无损检测方法及其新发展[J].混凝土, 2007(5):99-101.
[60] Cnudde V, Masschaele B, Dierick M, et al. Recent progress in X-ray CT as a geosciences tool[J]. Applied Geochemistry, 2006(21):826-832.
[61] 朱红光,谢和平,易成,等.岩石材料微裂隙演化的CT识别[J].岩石力学与工程学报, 2011, 30(6):1230-1238.
[62] 江洎洧,项伟,张雪杨,等.基于CT扫描和仿真试验研究黄土坡滑坡原状滑带土力学参数[J].岩石力学与工程学报, 2011, 30(5):1025-1033.
[63] Gupta S, Kua H W, Dai Pang S. Healing cement mortar by immobilization of bacteria in biochar:An integrated approach of self-healing and carbon sequestration[J]. Cement and Concrete Composites, 2018, 86:238-254.
[64] Xu H Y, Lian J J, Gao M M, et al. Self-healing concrete using rubber particles to immobilize bacterial spores[J]. Mater, 2019, 12(14):2313.
[65] Stuckrath C, Serpell R, Valenzuela L M, et al. Quantification of chemical and biological calcium carbonate precipitation:Performance of self-healing in reinforced mortar containing chemical admixtures[J]. Cement and Concrete Composites, 2014, 50:10-15.
[66] Wang J Y, Dewanckele J, Cnudde V, et al. X-ray computed tomography proof of bacterial-based self-healing in concrete[J]. Cement and Concrete Composites, 2014, 53:289-304.
[67] Kunamineni V, Murmu M, Shirish V, et al. Bacerite based self-healing concrete:A review[J]. Construction and Building Materials, 2017, 152:1008-1014.
[68] Ghosh P, Mandal S, Chattopadhyay B D, et al. Use of microorganism to improve the strength of cement mortar[J]. Cement and Concrete Research, 2005, 35(10):1980-1983.
[69] Andalib R, Majid M Z A, Hussin M W, et al. Optimum concentration of Bacillus megaterium for strengthening structural concrete[J]. Construction and Building Materials, 2016, 118:180-193.
[70] Chahal N, Siddique R, Rajor A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete[J]. Construction and Building Materials, 2012, 28:351-356.
[71] Sarkar M, Adak D, Tamang A, et al. Genetically-enriched microbe-facilitated self-healing concrete-a sustainable material for a new generation of construction technology[J]. RSC Advances, 2015, 5:105363-105371.
[72] Jonkers H M, Schlangen E. A two component bacteriabased self-healing concrete[M]//Concrete repair, rehabilitation and retrofitting II. Boca Raton:CRC Press, 2008:137-138.
[73] Luo M, Qian C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength[J]. Construction and Building Materials, 2016, 121:659-663.
[74] Zhang Y, Guo H X, Chen X H. Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77:160-167.
[75] Tziviloglou E, Wiktor V, Jonkers H M, et al. Bacteriabased self-healing concrete to increase liquid tightness of cracks[J]. Construction and Building Materials, 2016, 122:118-125.
[76] Mondal S, Ghosh A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete[J]. Construction and Building Materials, 2018, 183:202-214.
Outlines

/