[1] 刘小艳,姚武,郑晓芳,等.混凝土损伤自愈合性能的试验研究[J].建筑材料学报, 2005, 8(2):184-188.
[2] 张鹏,冯竟竟,陈伟,等.混凝土损伤自修复技术的研究与进展[J].材料导报, 2018, 32(10):3375-3386.
[3] 程东辉,潘洪涛.混凝土裂缝自动愈合机理研究[J].森林工程, 2005, 21(3):53-54.
[4] 李军,吕子义,邓初晴.水下混凝土裂缝修补技术的进展[J].新型建筑材料, 2007(10):9-12.
[5] 黄微波,李晶,高金岗.混凝土结构裂缝修复技术研究进展[J].工业建筑, 2014, 44(增刊1):934-937.
[6] 石晓东,何欢,梁瑞华,等.不同条件下的水泥基材料自然自愈合性能研究[J].混凝土与水泥制品, 2019(6):5-8, 28.
[7] 吕忠,陈惠苏.水泥基材料裂缝自主愈合研究进展[J].硅酸盐学报, 2014, 42(2):156-168.
[8] 练继建,高毛毛,闫玥,等.基于MICP技术的自修复混凝土研究进展[J].南水北调与水利科技, 2019, 17(1):164-176.
[9] 王燚,李振国,罗兴国.混凝土裂缝的修复技术简述[J].混凝土, 2006(3):91-93.
[10] 唐禄博,张华玮,赵慷慨,等.一种包含微生物胶囊能够持续自修复的地铁工程混凝土:106746942A[P]. 2017-05-31.
[11] 祁红梅,朱丽娟,姚博.混凝土裂缝修复技术探析[J].徐州建筑职业技术学院学报, 2009, 9(4):33-35.
[12] 蒋元驹,韩素芳.混凝土工程病害与修补加固[M].北京:海洋出版社, 1996:454-493.
[13] Rooij M D, Tittelboom K V, Belie N D, et al. Self-healing phenomena in cement-based materials[C]. Draft of State-of-the-Art report of RILEM Technical Committee, 2011.
[14] 匡亚川,欧进萍.混凝土裂缝的仿生自修复研究与进展[J].力学进展, 2006, 36(3):406-414.
[15] Boquet E, Boronat A, Ramos C A. Production of calcite (calcium carbonate) crystals by soil bacteria is a common phenomenon[J]. Nature, 1973, 45:527.
[16] Santosh K, Ramachandran S K, Ramakrishnan V, et al. Remediation of concrete using microorganisms[J]. Journal of the American Concrete Institute, 2001, 98:3-9.
[17] Jonkers H M, Schlangen E. Crack repair by concrete-immobilized bacteria[C]//Proceedings of the First International Conference on Self-healing Materials. Berlin:Springer, 2007:18-20.
[18] Muynck W D, Belie N D, Verstraete W. Microbial carbonate precipitation in construction materials:A review[J]. Ecological Engineering, 2010, 36(2):118-136.
[19] Jonhkers H M. Self healing concrete:A biological approach[C]//van der Zwaag S. Self healing materials:An alternative approach to 20 centuries of materials science. Dordrecht:Springer, 2007:195-204.
[20] 钱春香,李瑞阳,潘庆峰,等.混凝土裂缝的微生物自修复效果[J].东南大学学报, 2013, 43(2):360-364.
[21] Tziviloglou E, Tittelboom K V, Palin D, et al. Bio-based self-healing concrete:From research to field application[M]//Hager M D, van der Zwaag S, Schubert U S. Advances in polymer science. Dordrecht:Springer, 2016:345-385.
[22] Ehrlich H L, Newman D K, Kappler A. Geomicrobiology[M]. New York:CRC Press, 2015.
[23] 任立夫,钱春香.碳酸酐酶微生物沉积碳酸钙修复水泥基材料表面裂缝[J].硅酸盐学报, 2014, 42(11):1389-1395.
[24] Qian C, Chen H, Ren L, et al. Self-healing of early age cracks in cement-based materials by mineralization of carbonic anhydrase microorganism[J]. Frontiers in Microbiology, 2015, 6:314.
[25] 徐晶,姚武.微生物非脲解作用诱导碳酸钙沉积研究[J].同济大学学报, 2013, 41(10):1543-1545.
[26] Miller A. Collagen:The organic matrix of bone[J]. Philosophical Transactions Royal Society Biological Sciences, 1984, 304:455-477.
[27] Mana S. Biomineralization:Principles and concepts in bioinorganic materials chemistry[M]. UK:Oxford University Press, 2001.
[28] Willem D M, Nele D B, Willy V. Microbial carbonate precipitation in construction materials:A receive[J]. Ecological Engineering, 2010, 36:118-136.
[29] Plummer L N, busenberg E. The solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90℃, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O[J]. Geochim Cosmochim Ac, 1982, 46(6):1011.
[30] Spanos N, Koutsoukos P G. The transformation of vaterite to calcite:Effect of the conditions of the solutions in contact with the mineralphase[J]. Journal of Crystal Growth, 1998, 191(4):783.
[31] Rodriguez-Navarro C, Jimenez-Lopez C, Rodriguez-Navarro A, et al. Bacterially mediated mineralization of vaterite[J]. Geochim Cosmochim Ac, 2007, 71(5):1197.
[32] 王瑞兴,钱春香,王剑云.微生物沉积碳酸钙研究[J].东南大学学报, 2005, 35:192-195.
[33] 钱春香,王剑云,王瑞兴,等.微生物沉积方解石的产率[J].硅酸盐学报, 2006, 34(5):619-621.
[34] 王绪民,郭伟,余飞,等.营养盐浓度对胶结砂试样物理力学特性试验研究[J].岩土力学, 2016, 37:364-374.
[35] 彭劼,冯清鹏,孙益成.温度对微生物诱导碳酸钙沉积加固砂土的影响研究[J].岩土工程学报, 2018, 40(6):1049-1055.
[36] Wang J Y, De B N, Verstraete W. Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete[J]. Journal of Industrial Microbiology&Biotechnology, 2012, 39:567-577.
[37] Jonkers H M, Thijssen A, Muyzer G, et al. Application of bacteria as self-healing agent for the development of sustainable concrete[J]. Ecological Engineering, 2010, 36(2):230-235.
[38] Xu J, Wang X. Self-healing of concrete cracks by use of bacteria-containing low alkali cementitious material[J]. Construction and Building Materials, 2018, 167(10):1-14.
[39] 徐晶,王彬彬.陶粒负载微生物的混凝土开裂自修复研究[J].材料导报, 2017, 31(7):127-131.
[40] 李珠,冯涛,周梦君,等.基于科式芽孢杆菌矿化沉积的混凝土裂缝自修复性能试验研究[J].混凝土, 2017, 6:5-8.
[41] Alazhari M, Sharma T, Heath A, et al. Application of expanded perlite encapsulated bacteria and growth media for self-healing concrete[J]. Construction and Building Materials, 2018, 160(30):610-619.
[42] Wang J, van Tittelboom K, de Belie N, et al. Use of silica gel or polyurethane immobilized bacteria for selfhealing concrete[J]. Construction and Building Materials, 2012, 26(1):532-540.
[43] Wang J Y, Soens H, Verstraete W, et al. Self-healing concrete by use of microencapsulated bacterial spores[J]. Cement and Concrete Research, 2014, 56:139-152.
[44] Dong B, Wang Y, Fang G, et al. Smart releasing behavior of a chemical self-healing microcapsule in the stimulated concrete pore solution[J]. Cement and Concrete Composites, 2015, 56:46-50.
[45] Wikor V, Jonkers H M. Quantification of crack-healing in novel bacteria-based self-healing concrete[J]. Cement and Concrete Composites, 2011, 33:763-770.
[46] Xu J, Wang X, Zuo J, et al. Self-healing of concrete cracks by ceramsite-loaded microorganisms[J]. Advances in Materials Science and Engineering, 2018, 2018:5153041.
[47] Khaliq W, Ehsan M B. Crack healing in concrete using various bio influenced self-healing techniques[J]. Construction and Building Materials, 2016, 102:349-357.
[48] Wang J Y, Snoeck D S, Van Vlierberghe S V, et al. Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete[J]. Construction and Building Materials, 2014, 68:110-119.
[49] 王剑云,钱春香,王瑞兴,等.海藻酸钠固载菌株在水泥基材料表面防护中的应用研究[J].功能材料, 2009, 40(2):348-351.
[50] Luo M, Qian C X, Li R Y. Factors affecting crack repairing capacity of bacteria-based self-healing concrete[J]. Construction and Building Materials, 2015, 87:1-7.
[51] 李瑞阳.微生物修复混凝土裂缝的影响因素及机理[D].南京:东南大学, 2014.
[52] Van Tittelboom K, De Belie N, De Muynck W, et al. Use of bacteria to repair cracks in concrete[J]. Cement and Concrete Research, 2010, 40(1):157-166.
[53] Siddique R, Singh K, Kunal V, et al. Properties of bacterial rice husk ash concrete[J]. Construction and Building Materials, 2016, 121:112-119.
[54] Chahal N, SiddiQUE R, Rajor A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume[J]. Construction and Building Materials, 2012, 37:645-651.
[55] Aggelis D G, Leonidou E, Matikas T E. Subsurface crack determination by one-sided ultrasonic measurements[J]. Cement and Concrete Research, 2012, 34(2):140-146.
[56] 李俊如,高建光,王耀辉.超声波检测混凝土裂缝及裂缝成因分析[J].岩土力学, 2001, 22(3):291-293.
[57] 窦继民.大体积混凝土结构裂缝检测与分析[D].南京:河海大学, 2005.
[58] 姚武,钟文慧.混凝土损伤自愈的机理[J].材料研究学报, 2006, 20(1):24-28.
[59] 张科强,杨波.混凝土的无损检测方法及其新发展[J].混凝土, 2007(5):99-101.
[60] Cnudde V, Masschaele B, Dierick M, et al. Recent progress in X-ray CT as a geosciences tool[J]. Applied Geochemistry, 2006(21):826-832.
[61] 朱红光,谢和平,易成,等.岩石材料微裂隙演化的CT识别[J].岩石力学与工程学报, 2011, 30(6):1230-1238.
[62] 江洎洧,项伟,张雪杨,等.基于CT扫描和仿真试验研究黄土坡滑坡原状滑带土力学参数[J].岩石力学与工程学报, 2011, 30(5):1025-1033.
[63] Gupta S, Kua H W, Dai Pang S. Healing cement mortar by immobilization of bacteria in biochar:An integrated approach of self-healing and carbon sequestration[J]. Cement and Concrete Composites, 2018, 86:238-254.
[64] Xu H Y, Lian J J, Gao M M, et al. Self-healing concrete using rubber particles to immobilize bacterial spores[J]. Mater, 2019, 12(14):2313.
[65] Stuckrath C, Serpell R, Valenzuela L M, et al. Quantification of chemical and biological calcium carbonate precipitation:Performance of self-healing in reinforced mortar containing chemical admixtures[J]. Cement and Concrete Composites, 2014, 50:10-15.
[66] Wang J Y, Dewanckele J, Cnudde V, et al. X-ray computed tomography proof of bacterial-based self-healing in concrete[J]. Cement and Concrete Composites, 2014, 53:289-304.
[67] Kunamineni V, Murmu M, Shirish V, et al. Bacerite based self-healing concrete:A review[J]. Construction and Building Materials, 2017, 152:1008-1014.
[68] Ghosh P, Mandal S, Chattopadhyay B D, et al. Use of microorganism to improve the strength of cement mortar[J]. Cement and Concrete Research, 2005, 35(10):1980-1983.
[69] Andalib R, Majid M Z A, Hussin M W, et al. Optimum concentration of Bacillus megaterium for strengthening structural concrete[J]. Construction and Building Materials, 2016, 118:180-193.
[70] Chahal N, Siddique R, Rajor A. Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete[J]. Construction and Building Materials, 2012, 28:351-356.
[71] Sarkar M, Adak D, Tamang A, et al. Genetically-enriched microbe-facilitated self-healing concrete-a sustainable material for a new generation of construction technology[J]. RSC Advances, 2015, 5:105363-105371.
[72] Jonkers H M, Schlangen E. A two component bacteriabased self-healing concrete[M]//Concrete repair, rehabilitation and retrofitting II. Boca Raton:CRC Press, 2008:137-138.
[73] Luo M, Qian C. Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength[J]. Construction and Building Materials, 2016, 121:659-663.
[74] Zhang Y, Guo H X, Chen X H. Role of calcium sources in the strength and microstructure of microbial mortar[J]. Construction and Building Materials, 2015, 77:160-167.
[75] Tziviloglou E, Wiktor V, Jonkers H M, et al. Bacteriabased self-healing concrete to increase liquid tightness of cracks[J]. Construction and Building Materials, 2016, 122:118-125.
[76] Mondal S, Ghosh A. Investigation into the optimal bacterial concentration for compressive strength enhancement of microbial concrete[J]. Construction and Building Materials, 2018, 183:202-214.