[1] Chai J, Zhou Y H, Zhou X Y, et al.Analysis on shock effect of China's high-speed railway on aviation transport[J].Transportation Research Part A:Policy and Practice, 2018, 108:35-44.
[2] Xu W A, Zhou J, Yang L Y, et al.The implications of high-speed rail for Chinese cities connectivity and accessibility[J].Transportation Research Part A:Policy and Practice, 2018, 116:308-326.
[3] Rao Y R.Automatic smart parking system using internet of things[J].International Journal of Engineering Technology Science and Research, 2017, 4(5):2394-3386.
[4] Wang Z L, Song J H.Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J].Science, 2006, 312(5771):242-246.
[5] Fan F R, Tian Z Q, Wang Z L.Flexible triboelectric nanogenerator[J].Nano Energy, 2012, 1:328-334.
[6] Zhang X S, Han M D, Kim B, et al.All-in-one self-powered flexible microsystems based on triboelectric nanogenerators[J].Nano Energy, 2018, 47:410-426.
[7] Fan F R, Tang W, Wang Z L.Flexible nanogenerators for energy harvesting and self-powered electronics[J].Advanced Materials, 2016, 28(22):4283-4305.
[8] Zhu G, Peng B, Chen J, et al.Triboelectric nanogenerators as a new energy technology:From fundamentals, devices, to applications[J].Nano Energy, 2015, 14:126-138.
[9] Wang Z L.On Maxwell's displacement current for energy and sensors:The origin of nanogenerators[J].Materials Today, 2017, 20(2):74-82.
[10] Wang Z L, Chen J, Lin L.Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors[J].Energy & Environmental Science, 2015, 8(8):2250-2282.
[11] Cao X, Jie Y, Wang N, et al.Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J].Advanced Energy Materials, 2016, 6(23):1600665.
[12] Wang Z L.Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors[J].ACS Nano, 2013, 7(11):9533-9557.
[13] Xiong H C, Wang L B.Piezoelectric energy harvester for public roadway:On-site installation and evaluation[J].Applied Energy, 2016, 174:101-107.
[14] Wang S H, Lin L, Wang Z L.Triboelectric nanogenerators as self-powered active sensors[J].Nano Energy, 2015, 11:436-462.
[15] Niu S M, Wang Z L.Theoretical systems of triboelectric nanogenerators[J].Nano Energy, 2015, 14:161-192.
[16] Wang Z L.Triboelectric nanogenerators as new energy technology and self-powered sensors-principles, problems and perspectives[J].Faraday Discussions, 2014, 176:447-458.
[17] Yang W Q, Chen J, Zhu G, et al.Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator[J].Nano Research, 2013, 6(12):880-886.
[18] Zhu G, Yang W Q, Zhang T J, et al.Self-powered, ultrasensitive, flexible tactile sensors based on contact electrification[J].Nano Letters, 2014, 14(6):3208-3213.
[19] Chen J, Zhu G, Yang W, et al.Harmonic-resonatorbased triboelectric nanogenerator as a sustainable power source and a self-powered active vibration sensor[J].Advanced Materials, 2013, 25(42):6094-6099.
[20] Guo H Y, Leng Q, He X M, et al.A triboelectric generator based on checker-like interdigital electrodes with a sandwiched PET thin film for harvesting sliding energy in all directions[J].Advanced Energy Materials, 2015, 5(1):1400790.
[21] Fang H, Wu W Z, Song J H, et al.Controlled growth of aligned polymer nanowires[J].Journal of Physical Chemistry C, 2009, 113(38):16571-16574.
[22] Meng B, Tang W, Too Z H, et al.A transparent singlefriction-surface triboelectric generator and self-powered touch sensor[J].Energy & Environmental Science, 2013, 6(11):3235-3240.
[23] Wang H, Shi M Y, Zhu K, et al.High performance triboelectric nanogenerators with aligned carbon nanotubes[J].Nanoscale, 2016, 8(43):18489-18494.
[24] Huang T, Lu M X, Yu H, et al.Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide[J].Scientific Reports, 2015, 5(1):13942.
[25] Xia X N, Chen J, Liu G L, et al.Aligning graphene sheets in PDMS for improving output performance of triboelectric nanogenerator[J].Carbon, 2017, 111:569-576.
[26] Guo H Y, Yeh M H, Zi Y L, et al.Ultralight cut-paperbased self-charging power unit for self-powered portable electronic and medical systems[J].ACS Nano, 2017, 11(5):4475-4482.
[27] Bai P, Zhu G, Lin Z H, et al.Integrated multi layered triboelectric nanogenerator for harvesting biomechanical energy from human motions[J].ACS Nano, 2013, 7(4):3713-3719.
[28] Yang W Q, Chen J, Zhu G, et al.Harvesting energy from the natural vibration of human walking[J].ACS Nano, 2013, 7(12):11317-11324.
[29] Yang W, Chen J, Jing Q S, et al.3D stack integrated triboelectric nanogenerator for harvesting vibration energy[J].Advanced Functional Materials, 2014, 24(26):4090-4096.
[30] Chen, J, Yang J, Li Z, et al.Networks of triboelectric nanogenerators for harvesting water wave energy:A potential approach toward blue energy[J].ACS Nano, 2015, 9(3):3324-3331.
[31] Chung J, Lee S, Yong H, et al.Self-packaging elastic bellows-type triboelectric nanogenerator[J].Nano Energy, 2016, 20:84-93.
[32] Meng B, Tang W, Zhang X S, et al.Self-powered flexible printed circuit board with integrated triboelectric generator[J].Nano Energy, 2013, 2(6):1101-1106.
[33] Liu G L, Guo H Y, Chen L, et al.Double-inducedmode integrated triboelectric nanogenerator based on spring steel to maximize space utilization[J].Nano Research, 2016, 9(11):3355-3363.
[34] Wen X N, Yang W Q, Jing Q S, et al.Harvesting broadband kinetic impact energy from mechanical triggering/vibration and water waves[J].ACS Nano, 2014, 8(7):7405-7412.
[35] Jin L, Chen J, Zhang B B, et al.Self-powered safety helmet based on hybridized nanogenerator for emergency[J].ACS Nano, 2016, 10(8):7874-7881.
[36] Bowen C R, Arafa M H.Energy harvesting technologies for tire pressure monitoring systems[J].Advanced Energy Materials, 2015, 5(7):1401787.
[37] Qian J G, Kim D S, Lee D W.On-vehicle triboelectric nanogenerator enabled self-powered sensor for tire pressure monitoring[J].Nano Energy, 2018, 49:126-136.
[38] Guo T, Liu G X, Pang Y K, et al.Compressible hexagonal-structured triboelectric nanogenerators for harvesting tire rotation energy[J].Extreme Mechanics Letters, 2018, 18:1-8.
[39] Askari H, Saadatnia Z, Khajepour A, et al.A triboelectric self-powered sensor for tire condition monitoring:Concept, design, fabrication, and experiments[J].Advanced Engineering Materials, 2017, 19(12):1700318.
[40] Han C B, Du W M, Zhang C, et al.Harvesting energy from automobile brake in contact and non-contact mode by conjunction of triboelectrication and electrostatic-induction processes[J].Nano Energy, 2014, 6:59-65.
[41] Chandrasekhar A, Alluri N R, Saravanakumar B, et al.Human interactive triboelectric nanogenerator as a selfpowered smart seat[J].ACS Applied Materials & Interfaces, 2016, 8(15):9692-9699.
[42] Zhang B B, Zhang L, Deng W L, et al.Self-powered acceleration sensor based on liquid metal triboelectric nanogenerator for vibration monitoring[J].ACS Nano, 2017, 11(7):7440-7446.
[43] Pang Y K, Li X H, Chen M X, et al.Triboelectric nanogenerators as a self-powered 3D acceleration sensor[J].ACS Applied Materials & Interfaces, 2015, 7(34):19076-19082.
[44] 施毓凤, 杨晟, 孙力彤.城市轨道交通的安全管理问题[J].城市轨道交通研究, 2003(2):26-28.
[45] 何理, 钟茂华, 邓云峰.城市轨道交通危险因素分析[J].中国安全生产科学技术, 2005, 1(3):25-29.
[46] Meng X Y, Cheng Q, Jiang X B, et al.Triboelectric nanogenerator as a highly sensitive self-powered sensor for driver behavior monitoring[J].Nano Energy, 2018, 51:721-727.
[47] Wang J, Zhang H L, Xie Y H, et al.Smart network node based on hybrid nanogenerator for self-powered multifunctional sensing[J].Nano Energy, 2017, 33:418-426.
[48] Zhang B B, Chen J, Jin L, et al.Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for sustainably powering wireless traffic volume sensors[J].ACS Nano, 2016, 10(6):6241-6247.
[49] Lin L, Hu Y F, Xu C, et al.Transparent flexible nanogenerator as self-powered sensor for transportation monitoring[J].Nano Energy, 2013, 2(1):75-81.
[50] Askari H, Asadi E, Saadatnia Z, et al.A hybridized electromagnetic-triboelectric self-powered sensor for traffic monitoring:Concept, modelling, and optimization[J].Nano Energy, 2017, 32:105-116.
[51] Zhang L, Jin L, Zhang B B, et al.Multifunctional triboelectric nanogenerator based on porous micro-nickel foam to harvest mechanical energy[J].Nano Energy, 2015, 16:516-523.
[52] Mao Y C, Geng D L, Liang E J, et al.Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires[J].Nano Energy, 2015, 15:227-234.
[53] Bai Y, Han C B, He C, et al.Washable multilayer triboelectric air filter for efficient particulate matter PM2.5 removal[J].Advanced Functional Materials, 2018, 28(15):1706680.
[54] Gu G Q, Han C B, Lu C X, et al.Triboelectric nanogenerator enhanced nanofiber air filters for efficient particulate matter removal[J].ACS Nano, 2017, 11(6):6211-6217.
[55] Gu G Q, Han C B, Tian J J, et al.Triboelectric nanogenerator enhanced multilayered antibacterial nanofiber air filters for efficient removal of ultrafine particulate matter[J].Nano Research, 2018, 11(8):4090-4101.
[56] He C, Wang Z L.Triboelectric nanogenerator as a new technology for effective PM2.5 removing with zero ozone emission[J].Progress in Natural Science:Materials International, 2018, 28(2):99-112.
[57] Ma M Y, Zhang Z, Liao Q L, et al.Integrated hybrid nanogenerator for gas energy recycle and purification[J].Nano Energy, 2017, 39:524-531.
[58] Han C B, Jiang T, Zhang C, et al.Removal of particulate matter emissions from a vehicle using a self-powered triboelectric filter[J].ACS Nano, 2015, 9(12):12552-12561.
[59] Shen Q Q, Xie X K, Peng M F, et al.Self-powered vehicle emission testing system based on coupling of triboelectric and chemoresistive effects[J].Advanced Functional Materials, 2018, 28(10):1703420.
[60] Jiao J, Wang J, Jin F.Impacts of high-speed rail lines on the city network in China[J].Journal of Transport Geography, 2017, 60:257-266.
[61] Nellore K, Hancke Gerhard P.A Survey on urban traffic management system using wireless sensor networks[J].Sensors, 2016, 16(2):1-25.
[62] Lederman G, Chen S H, Garrett J H, et al.Track monitoring from the dynamic response of a passing train:A sparse approach[J].Mechanical Systems and Signal Processing, 2017, 90:141-153.
[63] Ahn D, Choi K.Performance evaluation of thermoelectric energy harvesting system on operating rolling stock[J].Micromachines, 2018, 9(7):359.
[64] Gatti G, Brennan M J, Tehrani M G, et al.Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator[J].Mechanical Systems and Signal Processing, 2016, 66/67:785-792.
[65] Jin L, Zhang S L, Xu S X, et al.Free-fixed rotational triboelectric nanogenerator for self-powered real-time wheel monitoring[J].Advanced Materials Technologies, 2021, 6(3):2000918.
[66] Zhao X J, Wei G W, Li X H, et al.Self-powered triboelectric nano vibration accelerometer based wireless sensor system for railway state health monitoring[J].Nano Energy, 2017, 34:549-555.
[67] Zhang Z X, He J, Wen T, et al.Magnetically levitatedtriboelectric nanogenerator as a self-powered vibration monitoring sensor[J].Nano Energy, 2017, 33:88-97.
[68] Hu Y F, Yang J, Niu S M, et al.Hybridizing triboelectrification and electromagnetic induction effects for highefficient mechanical energy harvesting[J].ACS Nano, 2014, 8(7):7442-7450.
[69] Jin L, Deng W L, Su Y C, et al.Self-powered wireless smart sensor based on maglev porous nanogenerator for train monitoring system[J].Nano Energy, 2017, 38:185-192.
[70] 刘妮娜, 王永录.轨道扣件智能检测系统的设计及应用[J].高速铁路技术, 2016, 7(4):55-59.
[71] Bayrashev A, Parker A, Robbins W P, et al.Low frequency wireless powering of microsystems using piezoelectric-magnetostrictive laminate composites[J].Sensors and Actuators A, 2004, 114:244-249.
[72] 刘维宁, 夏末, 郭文军.地铁列车振动的环境响应[J].岩石力学与工程学报, 1996, 15(增刊1):586-593.
[73] Bian Y X, Jiang T, Xiao T X, et al.Triboelectric nanogenerator tree for harvesting wind energy and illuminating in subway tunnel[J].Advanced Materials Technologies, 2018, 3(3):1700317.
[74] Zhang L, Zhang B B, Chen J, et al.Lawn structured triboelectric nanogenerators for scavenging sweeping wind energy on rooftops[J].Advanced Materials, 2015, 28(8):1650-1656.
[75] Seol M L, Woo J H, Jeon S B, et al.Vertically stacked thin triboelectric nanogenerator for wind energy harvesting[J].Nano Energy, 2015, 14:201-208.
[76] Huang L B, Xu W, Bai G X, et al.Wind energy and blue energy harvesting based on magnetic-assisted noncontact triboelectric nanogenerator[J].Nano Energy, 2016, 30:36-42.
[77] Ren X H, Fan H Q, Wang C, et al.Wind energy harvester based on coaxial rotatory freestanding triboelectric nanogenerators for self-powered water splitting[J].Nano Energy, 2018, 50:562-570.
[78] Zhang C G, Liu Y B, Zhang B F, et al.Harvesting wind energy by a triboelectric nanogenerator for an intelligent high-speed train system[J].ACS Energy Letters, 2021, 6(4):1490-1499.
[79] Yang Y, Zhu G, Zhang H L, et al.Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system[J].ACS Nano, 2013, 7(10):9461-9468.