Special to S&T Review

Witness of the new era of China space science since the past decadal

  • WANG Chi ,
  • SONG Tingting ,
  • SHI Peng ,
  • FAN Quanlin
Expand
  • National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2022-08-30

  Revised date: 2022-09-15

  Online published: 2022-11-04

Supported by

 

Abstract

Space science as one of the three major fields of China's space programs plays the key role in the construction of a first-class S&T power nation. Along with a brief review on the science mission profiles of the United States and European Space Agency, this paper states that China's space science has entered into a new era and that the guidance of major scientific goals and great science excellence have become the main principles for solicitation, selection and implementation of China's science missions. Over the past decade, the strategic priority program (SPP) on space science has taken the lead in establishing China's scientific satellite series and produced a number of original scientific achievements. The China manned space program(CMSP) and China's lunar and deep space exploration program(CLDSEP) have also achieved influential scientific & engineering outcomes. Considering space scientific missions as the most important platform for basic research, this paper once again calls on the deployment of more scientific satellites in China’ s space program to yield world-leading scientific breakthroughs.

Cite this article

WANG Chi , SONG Tingting , SHI Peng , FAN Quanlin . Witness of the new era of China space science since the past decadal[J]. Science & Technology Review, 2022 , 40(19) : 6 -14 . DOI: 10.3981/j.issn.1000-7857.2022.19.001

References

[1] Gan W Q, Zhu C, Deng Y Y, et al. Advanced Spacebased Solar Observatory(ASO-S): An overview[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 156.
[2] 孙丽琳, 吴季. 空间科学对国家科技、 经济与社会发展的作用[J]. 中国科学院院刊, 2015, 30(6): 733-739.
[3] 范全林, 宋婷婷, 时蓬, 等. 空间科学强国指标体系研究及其启示[J]. 中国科学院院刊, 2022, 37(8): 1076-1087.
[4] Pascolini-Campbell M, Reager J, Chandanpurkar H, et al. A 10 percent increase in global land evapotranspiration from 2003 to 2019[J]. Nature, 2021, 593: 543-547.
[5] Cottaar S, Koelemeijer P. The interior of Mars revealed[J]. Science, 2021, 373(6553): 388-389
[6] Kasper J C, Klein K G, Lichko E, et al. Parker Solar Probe enters the magnetically dominated solar corona[J]. Physical Review Letters, 2021, 127: 255101.
[7] Exoplanet exploration: Planets beyond our solar system [EB/OL]. [2022-09-08]. https://exoplanets.nasa.gov.
[8] 时蓬, 白青江, 王琴, 等. 2021年空间科学与深空探测热点回眸[J]. 科技导报, 2022, 40(1): 64-95.
[9] 王赤, 白青江, 时蓬, 等. 美国行星科学2023—2032年规划及启示[J]. 科技导报, 2022, 40(15): 6-15.
[10] 王赤, 时蓬, 宋婷婷, 等. 远航2050: 欧洲空间科学规划及启示[J]. 科技导报, 2022, 40(4): 6-15.
[11] 中国航天科工集团有限公司. 永远跟党走——中国航天事业的65年. 北京: 中国宇航出版社, 2021.
[12] History of NASA[M]. 2nd ed. Bournemouth: Future Plc, 2019.
[13] 中国科学院空间领域战略研究组. 中国至2050年空间科技发展路线图[M]. 北京: 科学出版社, 2009.
[14] 吴季, 王赤, 范全林. 中国科学院空间科学战略性先导科技专项实施11年回顾与展望[J]. 中国科学院院刊, 2022, 37(8): 1019-1030.
[15] 顾逸东. 关于空间科学发展的一些思考[J]. 中国科学院院刊, 2022, 37(8): 1031-1049.
[16] 吴伟仁, 刘继忠, 唐玉华, 等. 中国探月工程[J]. 深空探测学报, 2019, 6(5): 405-416.
[17] 吴伟仁, 于登云, 王赤, 等. 月球极区探测的主要科学与技术问题研究[J]. 深空探测学报, 2020,7(3): 223- 231.
[18] DAMPE Collaboration. Direct detection of a break in the teraelectronvolt cosmic-ray spectrum of electrons and positrons[J]. Nature, 2017, 552: 63-66.
[19] DAMPE Collaboration. Measurement of the cosmic ray proton spectrum from 40 GeV to 100 TeV with the DAMPE satellite[J]. Science Advances, 2019, 5(9): eaax3793.
[20] Alemanno F, An Q, Azzarello P, et al. Measurement of the cosmic ray helium energy spectrum from 70 GeV to 80 TeV with the DAMPE space mission[J]. Physical Review Letters, 2021, 126(20): 201102.
[21] Ge M Y, Ji L, Zhang S N, et al. Insight-HXMT firm detection of the highest-energy fundamental cyclotron resonance scattering feature in the spectrum of GRO J1008- 57[J]. The Astrophysical Journal Letters, 2020, 899: L19.
[22] Kong L D, Zhang S, Zhang S N. Insight-HXMT discovery of the highest-energy CRSF from the first Galactic Ultraluminous X-ray Pulsar Swift J0243.6+6124[J]. The Astrophysical Journal Letters, 2022, 933: L13.
[23] Weng S S, Cai Z Y, Zhang S N, et al. Time-lag between disk and corona radiation leads to hysteresis effect observed in black-hole X-ray binary MAXI J1348-630[J]. The Astrophysical Journal Letters, 2021, 915(1): 15.
[24] Li C K, Lin L, Xiong S L, et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J]. Nature Astronomy, 2021, 5: 378- 384.
[25] Xiao S, Xiong S L, Cai C, et al. Energetic transients joint analysis system for multi-INstrument (ETJASMIN) for GECAM—I. Positional, temporal, and spectral analyses[J]. Monthly Notices of the Royal Astronomical Society, 2022, 514(2): 2397-2406.
[26] Yin J, Cao Y, Li Y H, et al. Satellite-based entanglement distribution over 1200 kilometers[J]. Science, 2017, 356(6343): 1140-1144.
[27] Liao S K, Cai W Q, Pan J W, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549: 43-47.
[28] Ren J G, Xu P, Pan J W, et al. Ground-to-satellite quantum teleportation[J]. Nature, 2017, 549: 70-73.
[29] “墨子号” 何以激起空间量子科学热潮[N]. 光明日报, 2022-07-18(8).
[30] Lei X H, Cao Y J, Ma B H, et al. Development of mouse preimplantation embryos in space[J]. National Science Review, 2020, 7(9): 1437-1446.
[31] Li Z F, Zeng Z K, Xing Y, et al. Microscopic structure and dynamics study of granular segregation mechanism by cyclic shear[J]. Science Advances, 2021, 7(8): eabe8737.
[32] 王赤. 空间科学突破的前瞻和中国的贡献[J]. 中国科学院院刊, 2022, 37(8): 1050-1065.
[33] 王赤, 李超, 孙丽琳. 我国空间科学卫星任务国际合作管理实践与思考——以中国科学院空间科学战略性先导科技专项为例[J]. 中国科学院院刊, 2020, 35(8): 1032-1040.
[34] 侯增谦, 姚玉鹏, 董国轩, 等. 打通空间科学发展“最后一公里” ——国家自然科学基金资助空间科学回眸与展望[J]. 中国科学院院刊, 2022, 37(8): 1066-1075.
Outlines

/