[1] Che C, Park T, Wang X, et al. China and India lead in greening of the world through land-use management[J]. Nature Sustainability, 2019, 2: 122-129.
[2] Zastrow M. China's tree-planting drive could falter in a warming world[J]. Nature, 2019, 573(7775): 474-475.
[3] Bryan B A, Gao L, Ye Y S, et al. China's response to a national land-system sustainability emergency[J]. Nature, 2018, 559(7713): 193-204.
[4] 刘建宇, 聂洪峰, 肖春蕾, 等. 2010—2018年中国北方沙质荒漠化变化分析[J]. 中国地质调查, 2021, 8(6): 25- 34.
[5] 王岳, 刘学敏, 哈斯额尔敦, 等. 中国沙产业研究评述[J]. 中国沙漠, 2019, 39(4): 17-34.
[6] 刘恕. 沙产业——跨世纪的沙漠利用战略构想[J]. 科技导报, 1994, 12(11): 3-6.
[7] Gutak Ja M. Mineral resources of Novokuznetsk administrative district of Kemerovo region (metallic and non-metallic minerals)[J]. IOP Conference Series: Earth and Environment Science, 2017, 84: 012009.
[8] Orlova A I, Ojovan M. Ceramic mineral waste-forms for nuclear waste immobilization[J]. Materials, 2019, 12: 2638.
[9] Andrzejuk W, Barnat-Hunek D, Siddique R, et al. Application of recycled ceramic aggregates for the production of, ineral-asphalt mixtures[J]. Materials, 2018, 11: 658.
[10] 孙德利. 加强砂石土开采管理,切实保护矿产资源[J]. 矿产保护与利用, 2006, 24(5): 15-18.
[11] 程晓娜, 张博, 董晓方, 等. 我国砂石土矿开采现状及对策研究[J]. 中国矿业, 2015, 24: 23-26.
[12] Li Z, Li X, Tang Y, et al. Sintering behaviour and characterisation of low-cost ceramic foams from coal gangue and waste quartz sand[J]. Advances in Applied Ceramics, 2016, 115: 377-383.
[13] Tuna A. Development of lightweight ceramic construction materials based on flyASH[J]. Journal of the Australian Ceramic Society, 2017, 53: 109-115.
[14] Ter T P, Seman A A, Min K C, et al. Recycling of Malaysia's EAF steel slag waste as novel fluxing agent in green ceramic tile production. Sintering mechanism and leaching assessment[J]. Journal of Cleaner Production, 2019, 241: 118144,
[15] Zhao W C, Liu L W, Chen J, et al. Characterization of major elements in desert sediments and implications for the Chinese loess source[J]. Science of China: Earth Science, 2019, 62: 428-1440.
[16] 袁玉卿, 王选仓. 风积沙压实特性试验研究[J]. 岩土工程学报, 2007, 29(3): 360-365.
[17] 武贤慧, 魏进. 早强剂在石灰粉煤灰稳定沙漠沙中的应用[J]. 岩石力学与工程学报, 2004, 23(24): 4244- 4247.
[18] Mohamedzein Y E A. Stabilization of desert sands using municipal solid waste incinerator ASH[J]. Geotechnology and Geology Engineering, 2006, 24: 1767-1780.
[19] Al-Aghbari M Y, Mohamedzein Y E A, Taha R. Stabilisation of desert sands using cement and cement dust[J]. Proceedings of Inst Civil Engineering Ground Improvements, 2009, 162: 145-151.
[20] Saberian M, Moradi M, Vali R, et al. Stabilized marine and desert sands with deep mixing of cement and sodium bentonite[J]. Geomechanics and Engineering, 2018, 14: 553-562.
[21] Faccoli M, Petrogalli C, Lancini M A, et al. Effect of desert sand on wear and rolling contact fatigue behaviour of various railway wheel steels[J]. Wear, 2018, 396- 397: 146-161.
[22] Tahir A, Rafiq A, Muhammad K, et al. Effect of Thal silica sand nanoparticles and glass fiber reinforcements on epoxy-based hybrid composite[J]. Iranian Polymer Applied Mechanical Materials (Eng. Edit.), 2014, 24: 21- 27.
[23] Chuah S, Duan W H, Pa Z, et al. The properties of fly ash based geopolymer mortars made with dune sand[J]. Materials and Design, 2016, 92: 571-578.
[24] 内蒙古蒙西水泥有限公司. 风积沙替代粘土质原料生产硅酸盐水泥熟料的方法: ZL99110092.1[P]. 1999.
[25] 刘涛, 刘欢, 刘晓莉, 等. 利用风积沙替代天然资源生产水泥熟料[J]. 中国水泥, 2013, 27: 61-36.
[26] Neville A M. Properties of concrete[M]. London, Pitman, 1963.
[27] Luo F J, Li H, Zhu P, et al. Effect of very fine particles on workability and strength of concrete made with dune sand[J]. Construction and. Building Materials, 2013, 47: 131-137.
[28] Al-Harthy A S, Halim M A , Taha R, et al. The properties of concrete made with fine dune sand[J]. Building Materials, 2007, 21: 1803-1808.
[29] Rmili A, Ouezdou M B., Added M, et al. Incorporation of crushed sands and Tunisian desert sands in the composition of self-compacting concretes Part II: SCC fresh and hardened states characteristics[J]. International Journal of Concrete Structures and Materials, 2009, 3: 11- 14.
[30] Jin B H, Song J X, Liu H F. Engineering characteristics of concrete made of desert sand from Maowusu sandy land[J]. Applied Mechanics and Materials, 2012, 174- 177: 604-607.
[31] 刘海峰, 马菊荣, 付杰, 等. 沙漠砂混凝土力学性能研究[J]. 混凝土, 2015, 311: 80-83.
[32] Li X A, Zheng H F, Li X X, et al. Test on the mortar mix ratio with Aeolian sand of Mu Us desert[J]. Advanced Materials Research, 2011, 152-153: 892-896.
[33] Zhang G X, Song J X, Yang J S, et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J]. Building Environment, 2006, 41: 1478-1481.
[34] Che Jialing, Li Quanwei, Lee Minggin, et al. Experimental research on mechanical properties of desert sand steel-PVA fiber engineered cementitious composites[J]. Function Materials, 2017, 245: 84-592.
[35] Neumann Frank, Curbach Manfred. Thermal treatment of desert sand to produce construction material[J]. MATEC Web of Conference, 2018, 149: Article number 01030.
[36] Dir N, Faucett D, Choi C, et al. Slow-crack-growth and indentation damage in calcium magnesium aluminosilicate (CMAS) glass from desert sand[J]. Ceramics International, 2018, 44: 2676-2682.
[37] 王文彬, 宋嘉威, 史志铭, 等. 利用沙漠风积沙合成石英 纳米 晶微 晶玻 璃的 方法 : ZL2021100097045.5[P]. 2021.
[38] 王子东. 利用风积沙合成堇青石微晶玻璃的工艺原理研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
[39] 史志铭, 范文, 王文彬. 利用沙漠风积沙制备石英质陶瓷的技术: ZL2013107433663[P]. 2015.
[40] Wang W B, Shi Z M, Wang X G, et al. The synthesis and properties of high-quality forsterite ceramics using desert drift sands to replace traditional raw materials[J]. Journal of the Ceramic Society of Japan, 2017, 125: 88- 94.
[41] Wang W, Shi Z, Wang Z, et al. Phase transformation and properties of high-quality mullite ceramics synthesized using desert drift sands as raw materials[J]. Material Letters, 2017, 21: 271-274.
[42] 罗婷, 顾幸勇, 吴军明, 等. 利用沙漠沙低温合成高长径比莫来石晶须[J]. 人工晶体学报, 2018, 47(8): 1607- 1611.
[43] 史志铭, 王文彬, 曹振, 等. 假蓝宝石质陶瓷及其合成方法: ZL201810095084.X[P]. 2017.
[44] 史志铭, 王文彬, 范文. 利用沙漠风积沙制备堇青石质陶瓷的方法: ZL201310743382.2[P]. 2014.
[45] Wang W, Shi Z, Wang X, et al. The phase transformation and thermal expansion properties of cordierite ceramics prepared using drift sands to replace pure quartz [J]. Ceramics International, 2016, 42: 4477-4485.
[46] Abdel S, Monem M, Hassan E, et al. Microstructure and phase composition of cordierite-based co-clinker[J]. Ceramics International, 2018, 44: 5855-5866.
[47] 史志铭, 王士刚, 王文彬. 种制备多孔陶瓷的原料及多孔材料的制备方法: CN202010005917.6[P]. 2020.
[48] 范文. 利用石英砂制备石英质陶瓷的研究[D]. 呼和浩特: 内蒙古工业大学, 2014.
[49] 荣敏. 用沙漠黄沙制备堇青石质低膨胀陶瓷材料的研究[D]. 景德镇: 景德镇陶瓷学院, 2015.
[50] Radwan M, Kashiwagi T, Miyamoto Y, et al. New synthesis route for Si2N2O ceramics based on desert sand[J]. Journal of the European Ceramic Society, 2003, 23: 2337-2341.
[51] 史志铭, 王文彬, 王志旭, 等. 镁橄榄石-碳化硅复合陶瓷材料及其合成: ZL201710404510.9[P]. 2020.
[52] Shi Z M. Use of desert-sands to synthesize MgSiO3-SiC composite ceramics[C]//Proceedings of 22nd International Conference on Composites Materials. Australia, Melbourne, 2019: 11-16.
[53] 张勇. 利用风积沙取代石英砂合成SiO2-ZrO2系复相陶瓷的研究[D]. 呼和浩特: 内蒙古工业大学, 2021.
[54] 史志铭, 韩超, 王文彬, 等. 一种钙长石-石英-玻璃相复合陶瓷的制备方法: CN20201011436.X[P]. 2020.
[55] 韩超. 利用风积沙和粉煤灰制备陶瓷的研究[D]. 呼和浩特: 内蒙古工业大学, 2020.
[56] Zhu G, Shuo L, Feng J, et al. Research on distribution performance of desert sand for heat storage in downcomer[J]. International Journal of Green Energy, 2018, 15: 106-112.
[57] Liang C, Zhou C, Chen Z, et al. Electrochemical lithium storage properties of desert sands[J]. Ionics, 2017, 12: 1- 7.
[58] Li J, Xu C, Guo C, et al. Electrochemical lithium storage properties of desert sands[J]. Journal of Materials Chemistry, 2017, A6: 223-230.
[59] 史志铭, 殷文迪, 闫华. 一种高效溶解硅酸盐类物质并提取高纯氧化硅的方法: CN202110225826.8[P]. 2021.
[60] 史志铭, 殷文迪, 闫华, 等. 从多离子混合溶液中分步提取氢氧化物的方法: CN202110207136.X[P]. 2021.
[61] Shi Zhiming, Yin Wendi, Yan Hua, et al. A method for stepwise extraction of silica and hydroxide from silicate substances: 17331652[P]. 2021-05-27
[62] 史志铭. 利用沙漠沙合成陶瓷的技术及其产业化前景[C]//第十四届全国循环经济与生态工业学术研讨会暨中国生态经济学会工业生态经济与技术专业委员会, 太原: 2019.
[63] Abd E N, Hamdy H. High and low temperature alteration of uranium and thorium minerals, Um Aragranites, Southeastern Desert[J]. Egypt. Ore Geology Reviews, 2009, 35: 436-446.