Exclusive: Deep geothermal reservoir stimulation technology

Research progress on heat extraction technology for developing medium-deep geothermal energy

  • SONG Xianzhi ,
  • LI Gensheng ,
  • WANG Gaosheng ,
  • SHI Yu ,
  • YANG Ruiyue
Expand
  • 1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing, Beijing 102249, China;
    2. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China

Received date: 2022-09-23

  Revised date: 2022-10-13

  Online published: 2022-11-15

Abstract

The medium-deep geothermal energy in China is abundant, with a great potential for development and utilization. To accelerate the exploitation of the medium-deep geothermal energy is important for promoting the rapid development of China's clean heating industry, with a diversified energy supply system and with the goals of the"carbon peaking and carbon neutrality" in the future. In the context of the efficient exploitation of the medium and deep geothermal energy, this paper reviews the researches of the heat extraction technology for exploiting the medium-deep geothermal energy, including various heat extraction technologies based on the doublet-well circulation, the closed-loop circulation in a single well, the circulation in a gravity heat pipe, the open-loop circulation in a single well, the circulation in a U-shaped well and the circulation in a multilateral radial well. The characteristics, the application conditions and the future researches of key heat extraction technologies are analyzed, as well as the development stage and the application scenarios of different heat extraction technologies. The suggestions for efficient exploitation of the medium-deep geothermal energy are proposed.

Cite this article

SONG Xianzhi , LI Gensheng , WANG Gaosheng , SHI Yu , YANG Ruiyue . Research progress on heat extraction technology for developing medium-deep geothermal energy[J]. Science & Technology Review, 2022 , 40(20) : 42 -51 . DOI: 10.3981/j.issn.1000-7857.2022.20.006

References

[1] 王贵玲, 张薇, 梁继运, 等.中国地热资源潜力评价[J].地球学报, 2017, 38(4):449-450, 134, 451.
[2] Zhang Q, Chen S Y, Tan Z Z, et al.Investment strategy of hydrothermal geothermal heating in China under policy, technology and geology uncertainties[J].Journal of Cleaner Production, 2019, 207:17-29.
[3] Ragnarsson Á, Steingrímsson B, Thorhallsson S.Geothermal development in Iceland 2015-2019[C]//Proceedings World Geothermal Congress.Hague:International Geothernal Association, 2020:1-15.
[4] Moeck I, Bracke R, Weber J.The energy transition from fossil fuels to geothermal energy-A german case study[C/OL].[2022-10-01].https://www.geotis.de/homepage/sitecontent/info/publication_data/congress/congress_data/Moeck_WGC_2020_Energy_Transition.pdf.
[5] 马峰, 王贵玲, 魏帅超, 等.2018年地热勘探开发热点回眸[J].科技导报, 2019, 37(1):134-143.
[6] Zhao Z H, Dou Z H, Liu G H, et al.Equivalent flow channel model for doublets in heterogeneous porous geothermal reservoirs[J].Renewable Energy, 2021, 172:100-111.
[7] Liu Y G, Long X L, Liu F.Tracer test and design optimization of doublet system of carbonate geothermal reservoirs[J].Geothermics, 2022, 105:102533.
[8] Lu S M.A global review of enhanced geothermal system (EGS)[J].Renewable and Sustainable Energy Reviews, 2018, 81:2902-2921.
[9] 宋先知, 许富强, 宋国锋.废弃井地热能开发技术现状与发展建议[J].石油钻探技术, 2020, 48(6):1-7.
[10] 辛守良, 朱健, 王家立, 等.留北潜山油藏地热综合利用[J].石油石化节能, 2012, 2(12):41-42, 52.
[11] 唐永香, 李嫄嫄, 俞礽安, 等.油田区地热资源的集约化开发利用分析:以滨海新区为例[J].中国矿业, 2019, 28(4):98-103.
[12] Cao W J, Huang W B, Jiang F M.A novel thermal-hydraulic-mechanical model for the enhanced geothermal system heat extraction[J].International Journal of Heat and Mass Transfer, 2016, 100:661-71.
[13] Sun Z X, Zhang X, Xu Y, et al.Numerical simulation of the heat extraction in EGS with thermal-hydraulic-mechanical coupling method based on discrete fractures model[J].Energy, 2017, 120:20-33.
[14] Liu J, Xue Y, Zhang Q, et al.Coupled thermo-hydromechanical modelling for geothermal doublet system with 3D fractal fracture[J].Applied Thermal Engineering, 2022, 200:117716.
[15] Saleh F, Teodoriu C, Salehi S, et al.Geothermal drilling:A review of drilling challenges with mud design and lost circulation problem[C]//Proceedings of 45th Annual Stanford Geothermal Workshop.Stanford:Stanford University, 2020:1-8.
[16] Song X Z, Wang G S, Shi Y, et al.Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system[J].Energy, 2018, 164:1298-1310.
[17] Thomasson T, Abdurafikov R.Dynamic simulation and techno-economic optimization of deep coaxial borehole heat exchangers in a building energy system[J].Energy and Buildings, 2022, 275:112457.
[18] Wang G S, Song X Z, Shi Y, et al.Comparison of production characteristics of various coaxial closed-loop geothermal systems[J].Energy Conversion and Management, 2020, 225:113437.
[19] Wang G S, Song X Z, Shi Y, et al.Heat extraction analysis of a novel multilateral-well coaxial closed-loop geothermal system[J].Renewable Energy, 2021, 163:974-986.
[20] Wang G S, Song X Z, Song G F, et al.Analyzes of thermal characteristics of a hydrothermal coaxial closedloop geothermal system in a horizontal well[J].International Journal of Heat and Mass Transfer, 2021, 180:121755.
[21] Wang Y R, Wang Y M, You S J, et al.Operation optimization of the coaxial deep borehole heat exchanger coupled with ground source heat pump for building heating[J].Applied Thermal Engineering, 2022, 213:118656.
[22] Morita K, Bollmeier W S, Mizogami H.An experiment to prove the concept of the downhole coaxial heat exchanger (DCHE) in Hawaii[C]//Transactions-Geothermal Resources Council Annual Meeting.Reno:Geothermal Resources Council, 1992, 1:9-16.
[23] 任虎俊.水热型地热能同轴管换热技术研究-以河北省邯郸地区为例[J].中国煤炭地质, 2018, 30(6):105-108.
[24] 宋先知, 张逸群, 李根生, 等.雄安新区地热井同轴套管闭式循环取热技术研究[J].天津大学学报(自然科学与工程技术版), 2021, 54(9):971-981.
[25] Holmberg H, Acuña J, Næss E, et al.Thermal evaluation of coaxial deep borehole heat exchangers[J].Renewable Energy, 2016, 97:65-76.
[26] Sun F R, Yao Y D, Li G, et al.Performance of geothermal energy extraction in a horizontal well by using CO2 as the working fluid[J].Energy Conversion and Management, 2018, 171:1529-1539.
[27] Huang W B, Cen J W, Chen J W, et al.Heat extraction from hot dry rock by super-long gravity heat pipe:A field test[J].Energy, 2022, 247:123492.
[28] 蒋方明, 黄文博, 曹文炅.干热岩热能的热管开采方案及其技术可行性研究[J].新能源进展, 2017, 5(6):426-434.
[29] Zhang L, Wu Z, Deng B.Experimental analysis and improvement measures of extracting geothermal heat from a super long gravity heat pipe (in Chinese)[J].Energy Conserv, 2015, 10:77-80.
[30] 张龙.某超长重力热管提取地热的热工分析及改进措施[D].西安:西安工程大学, 2016.
[31] 黄文博, 曹文炅, 李庭樑, 等.干热岩热能重力热管采热系统数值模拟研究与经济性分析[J].化工学报, 2021, 72(3):1302-1313.
[32] 李庭樑, 岑继文, 黄文博, 等.超长重力热管传热性能实验研究[J].化工学报, 2020, 71(3):997-1008.
[33] Chen J L, Huang W B, Cen J W, et al.Heat extraction from hot dry rock by super-long gravity heat pipe:Selection of working fluid[J].Energy, 2022, 255:124531.
[34] Wang G S, Song X Z, Shi Y, et al.Numerical investigation on heat extraction performance of an open loop geothermal system in a single well[J].Geothermics, 2019, 80:170-184.
[35] Wang G S, Song X Z, Shi Y, et al.Production performance of a novel open loop geothermal system in a horizontal well[J].Energy Conversion and Management, 2020, 206:112478.
[36] Wang G S, Song X Z, Yu C, et al.Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well[J].Energy, 2022, 242:122527.
[37] Sørensen S N, Reffstrup J.Prediction of long-term operational conditions for single-well groundwater heat pump plants[R].Warrendale:SAE International, 1992.
[38] 倪龙, 马最良, 徐生恒, 等.北京某同井回灌地下水地源热泵工程现场试验研究[J].暖通空调, 2006(10):86-92.
[39] Ni L, Li H R, Jiang Y Q, et al.A model of groundwater seepage and heat transfer for single-well ground source heat pump systems[J].Applied Thermal Engineering, 2011, 31(14):2622-2630.
[40] Song X Z, Shi Y, Li G S, et al.Numerical analysis of the heat production performance of a closed loop geothermal system[J].Renewable Energy, 2018, 120:365-378.
[41] 关春敏.中深层U型井地源热泵的传热分析及系统优化[D].济南:山东建筑大学, 2022.
[42] 罗娜宁, 刘林, 申小龙, 等.中深层U型井供热技术原理与实践[J].节能技术, 2021, 39(5):436-441.
[43] 张育平, 王兴, 薛宇泽, 等.关中盆地中深层地热能开发"保水取热"供暖关键技术[J].区域供热, 2020(4):122-128.
[44] 翟丽娟.中深层U型对接井"取热不取水"技术研究[J].中国煤炭地质, 2020, 31(增刊1):12-15, 65.
[45] 李俊岩.中深层地热用深U型地埋管换热器取热特性研究[D].邯郸:河北工程大学, 2021.
[46] Wei C J, Mao L J, Yao C S, et al.Heat transfer investigation between wellbore and formation in U-shaped geothermal wells with long horizontal section[J].Renewable Energy, 2022, 195:972-989.
[47] 李超, 官燕玲, 杨瑞涛, 等.U型深埋管固井层对埋管换热性能影响的研究[J].太阳能学报, 2021, 42(2):267-73.
[48] Shi Y, Song X Z, Wang G S, et al.Numerical study on heat extraction performance of a multilateral-well enhanced geothermal system considering complex hydraulic and natural fractures[J].Renewable Energy, 2019, 141:950-963.
[49] Song X Z, Shi Y, Li G S, et al.Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J].Applied Energy, 2018, 218:325-337.
[50] Song G F, Song X Z, Li G S, et al.An integrated multiobjective optimization method to improve the performance of multilateral-well geothermal system[J].Renewable Energy, 2021, 172:1233-1249.
[51] Shi Y, Song X Z, Li J C, et al.Analysis for effects of complex fracture network geometries on heat extraction efficiency of a multilateral-well enhanced geothermal system[J].Applied Thermal Engineering, 2019, 159:113828.
[52] Shi Y, Song X Z, Song G F.Productivity prediction of a multilateral-well geothermal system based on a long short-term memory and multi-layer perceptron combinational neural network[J].Applied Energy, 2021, 282:116046.
Outlines

/