[1] 张亮亮, 王岩.“工业味精” 生产亟待政府呵护[J]. 中国国情国力, 2007(2): 51-53.
[2] 窦学宏. 稀土元素镧及其应用[J]. 稀土信息, 2005(2): 33-34.
[3] 亨德森. 稀土元素地球化学[M]. 田丰, 施烺, 译. 北京: 地质出版社, 1989.
[4] 陈润艳. 稀土污染与环境保护[J]. 金属功能材料, 2019, 26(5): 60-68.
[5] 张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9-16.
[6] 李振民, 刘一力, 孙菊英, 等. 世界稀土需求趋势分析[J]. 稀土, 2017, 38(3): 149-158.
[7] Liu Q, Liu L, Liu X, et al. Building stock dynamics and the impact of construction bubble and bust on employment in China[J]. Journal of Industrial Ecology, 2021, 25(6): 1631-1643.
[8] Ciacci L, Vassura I, Cao Z, et al. Recovering the "new twin": Analysis of secondary neodymium sources and recycling potentials in Europe[J]. Resources, Conservation and Recycling, 2019, 142: 143-152.
[9] Gloser S, Soulier M, Tercero Espinoza L A. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013, 47(12): 6564-6572.
[10] Wang C, Zhao L, Lim M K, et al. Structure of the global plastic waste trade network and the impact of China's import Ban[J]. Resources, Conservation and Recycling, 2020, 153: 104591.
[11] Zhang C, Liu B, Li N, et al. Resource nexus for sustainable development: Status quoand prospect[J]. Chinese Science Bulletin, 2020, 66(26): 3426-3440.
[12] Wang P, Jiang Z Y, Geng X Y, et al. Dynamic material flow analysis of steel resources in China based on circular economy theory[J]. Advanced Materials Research, 2013, 813: 64-71.
[13] 张超, 王韬, 陈伟强, 等. 中国钢铁长期需求模拟及产能过剩态势评估[J]. 中国人口·资源与环境, 2018, 28(10): 169-176.
[14] 李新, 任强, 罗胤达, 等. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018, 40(12): 2329-2340.
[15] Chen W Q, Shi L. Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production[J]. Resources Conservation and Recycling, 2012, 65: 18-28.
[16] Yue Q, Lu Z W. Aluminum flow analysis for the life cycle of aluminum products[J]. Advanced Materials Research, 2010, 113-116: 2287-2291.
[17] Liu G, Müller D B. Mapping the global journey of anthropogenic aluminum: A trade-linked multilevel material flow analysis[J]. Environmental Science & Technology, 2013, 47(20): 11873-11881.
[18] Rauch J N, Graedel T E. Earth's anthrobiogeochemical copper cycle[J]. Global Biogeochemical Cycles, 2007, 21(2): 1-13.
[19] Graedel T E, van Beers D, Bertram M, et al. The multilevel cycle of anthropogenic zinc[J]. Journal of Industrial Ecology, 2005, 9(3): 67-90.
[20] Graedel T E, Bertram M, Reck B. Exploratory data analysis of the multilevel anthropogenic zinc cycle[J]. Journal of Industrial Ecology, 2005, 9(3): 91-108.
[21] Johnson J, Jirikowic J, Bertram M, et al. Contemporary anthropogenic silver cycle: A multilevel analysis[J]. Environmental Science & Technology, 2005, 39(12): 4655- 4665.
[22] Johnson J, Schewel L, Graedel T E. The contemporary anthropogenic chromium cycle[J]. Environmental Science & Technology, 2006, 40(22): 7060-7069.
[23] Reck B K, Müeller D B, Rostkowski K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling [J]. Environmental Science & Technology, 2008, 42(9): 3394-3400.
[24] Mao J S, Dong J, Graedel T E. The multilevel cycle of anthropogenic lead I. Methodology[J]. Resources Conservation and Recycling, 2008, 52(8-9): 1058-1064.
[25] Yang J, Li X, Xiong Z, et al. Environmental pollution effect analysis of lead compounds in China based on life cycle[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2184.
[26] Tang L, Wang P, Graedel T E, et al. Refining the understanding of China's tungsten dominance with dynamic material cycle analysis[J]. Resources, Conservation and Recycling, 2020, 158: 104829.
[27] Schneider D W. Book review: Metabolism of the anthroposphere: Analysis, evaluation, design[J]. Journal of Planning Education and Research, 2013, 33(4): 497-499.
[28] Du X, Graedel T E. Global in-use stocks of the rare Earth elements: A first estimate[J]. Environmental Science & Technology, 2011, 45(9): 4096-4101.
[29] Du X, Graedel T E. Uncovering the end uses of the rare earth elements[J]. Science of the Total Environment, 2013, 461-462: 781-784.
[30] Fishman T, Myers R, Rios O, et al. Implications of emerging vehicle technologies on rare earth supply and demand in the United States[J]. Resources, 2018, 7(1): 9.
[31] Wang Q C, Wang P, Qiu Y, et al. Byproduct surplus: Lighting the depreciative europium in China's rare earth boom[J]. Environmental Science & Technology, 2020, 54(22): 14686-14693.
[32] Guyonnet D, Planchon M, Rollat A, et al. Material flow analysis applied to rare earth elements in Europe[J]. Journal of Cleaner Production, 2015, 107: 215-228.
[33] Chen W J, Wang Z H, Gong X Z, et al. Substance flow analysis of rare earth lanthanum in China[J]. Materials Science Forum, 2017, 898: 2455-2463.
[34] 张臻悦, 何正艳, 徐志高, 等. 中国稀土矿稀土配分特征[J]. 稀土, 2016, 37(1): 121-127.
[35] Survey U S G. Mineral commodity summaries 2019[EB/ OL]. [2022-05-20]. https://www.usgs.gov/search?keywords=Mineral+commodity+summaries+2019.
[36] Comtrade U N. International trade statistics database[EB/ OL]. [2022-05-20]. https://comtrade.un.org.
[37] 中华人民共和国工业和信息化部. 稀土产业发展计划(2016—2020年)[EB/OL]. [2022-05-20]. http://www.gov.cn/xinwen/2016-10/18/content_5120998.htm.
[38] 张晓微, 黄颖莎. 光学行业研究报告[EB/OL]. [2022-05-20]. https://www.tfzq.com/ueditor/php/upload/file/201-80417/1523929030331344.pdf.
[39] 张文毓. 稀土催化材料的研究进展与应用[J]. 精细石油化工进展, 2020, 21(3): 35-39, 53.
[40] 赖新暖, 宰云肖, 韩建崴, 等. 混合电动汽车用镍氢动力电池的寿命试验[J]. 广东化工, 2013, 40(12): 58-59.
[41] 周亚辉, 周松涛, 周敏. 钢铁企业滚动轴承使用寿命探讨[J]. 机械管理开发, 2018, 33(8): 78-79, 112.
[42] 孔令文. 数码相机电池如何延寿[J]. 山东农机化, 2010(2): 32.
[43] 苏利平, 高爽. 改革开放四十年以来稀土产业政策演进历程与启示展望[J]. 中国矿业, 2021, 30(5): 20-26, 35.
[44] 贾涛, 刘小芳.“新中国70年” 中国稀土产业回顾与展望[J]. 稀土信息, 2019(9): 12-19.
[45] 中华人民共和国国务院新闻办公室. 中国的稀土状况与 政策( 白皮 书) [EB/OL]. [2022-10-20]. http://www.scio.gov.cn/ztk/dtzt/77/3/Document/1175752/1175752.htm.
[46] 苏晓云, 郭莉芳. 我国汽车尾气净化稀土催化剂研究应用现状及发展趋势[J]. 稀土, 2006, 27(5): 3.
[47] 张莉, 孙兆林, 王久江, 等. 稀土在催化裂化领域中的研究进展[J]. 稀土, 2020, 41(3): 117-128.
[48] 曹生彪, 皇甫益. 混合动力汽车用镍氢电池的现状及发展分析[J]. 电池, 2016, 46(5): 289-291.
[49] Hu X, Wang C, Zhu X, et al. Trade structure and risk transmission in the international automotive Li-ion batteries trade[J]. Resources, Conservation and Recycling, 2021, 170: 105591.
[50] 墨柯. 锂电市场发展回顾及趋势预测[J]. 新材料产业, 2015(9): 2-7.
[51] 易璐, 郑明贵. 中国稀土开采总量控制政策效应评估[J]. 有色金属科学与工程, 2021, 12(2): 120-126.
[52] 王慧娟, 缪羽. 稀土元素镧在医学领域的应用与研究[J]. 内蒙古医学杂志, 2020, 52(3): 278-280.
[53] 崔小明. 稀土化合物在橡胶领域中的应用研究进展[J]. 橡胶科技, 2015, 13(9): 11-16.
[54] 唐定骧, 涂铭旌, 陈云贵, 等. 镧镨铈新型混合稀土金属应用研究进展[C]//中国稀土学会第四届学术年会. 北京: 中国稀土学会, 2000: 709-715.
[55] Bhandari C, Flatté M E, Paudyal D. Enhanced magnetic anisotropy in lanthanum M-type hexaferrites by quantum-confined charge transfer[J]. Physical Review Materials, 2021, 5(9): 094415.
[56] Wang P, Wang H, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022(3): 392-395.
[57] 刘贵清, 曲志平, 张磊. 从废催化剂中回收稀土的现状与展望[J]. 中国资源综合利用, 2014, 32(6): 27-29.
[58] 刘腾, 邱兆富, 杨骥, 等. 废FCC催化剂的形态、 成分分析及环境风险评价[J]. 无机盐工业, 2016, 48(11): 71- 74.
[59] 张宏哲. 催化裂化废催化剂综合利用技术[J]. 化工进展, 2016, 35(增刊2): 358-362.
[60] 赵哲萱, 邱兆富, 杨骥, 等. 从废FCC催化剂和废汽车尾气净化催化剂中回收稀土的研究进展[J]. 化工环保, 2015, 35(6): 603-608.
[61] 苑志伟, 孟佳, 赵世伟. 从废FCC催化剂中回收稀土的研究[J]. 石油炼制与化工, 2010, 41(10): 33-39.
[62] Zhou Y, Schulz S, Lindoy L F, et al. Separation and recovery of rare earths by in situ selective electrochemical oxidation and extraction from spent fluid catalytic cracking (FCC) catalysts[J]. Hydrometallurgy, 2020, 194: 105300.
[63] Wang J Y, Huang X W, Wang L S, et al. Kinetics study on the leaching of rare earth and aluminum from FCC catalyst waste slag using hydrochloric acid[J]. Hydrometallurgy, 2017, 171: 312-319.