Exclusive: Primary mineral product supply security strategy

Dynamic material flow analysis and supply and demand management of lanthanum in China

  • ZHAO Shen ,
  • WANG Xin ,
  • WANG Heming ,
  • WANG Peng ,
  • WANG Lu ,
  • YUE Qiang ,
  • DU Tao ,
  • CHEN Weiqiang
Expand
  • 1. Ganjiang Institute of Innovation, Chinese Academy of Sciences, Ganzhou 341000, China;
    2. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China;
    3. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-06-03

  Revised date: 2022-10-21

  Online published: 2022-11-30

Abstract

In order to reveal the changing trend of lanthanum material flow in China and describe its trade pattern, this paper constructs a dynamic material flow analysis framework for lanthanum that simulates the flow of lanthanum in the whole life cycle and analyzes the flow of lanthanum in China in terms of inventory, and supply and demand from 1990 to 2018,. The results show that: 1) 96% of China's lanthanum supply came from domestic mining, of which 77% came from Bayan Obo ores and bastnaesite ores; 2) lanthanum has a wide variety of functional materials, and the most of the 28-year cumulative amount of lanthanum were used in petroleum cracking catalysts that consumed 47% of the total application of lanthanum; 3) from 1990 to 2018, China exported 292,000 tons of lanthanum, mainly smelting and separating products, to other countries; and 4) between 1990 and 2018, China's lanthanum was generally in excess but a small amount of insufficient supply occurred in 2013-2017 due to the significant export of lanthanum oxide and the growth of downstream applications, which was conducive to reducing inventory and promoting supply and demand balance. Based on these results this study suggests vigorously developing new materials and expanding new applications based on consolidating existing downstream consumption. In addition, to prevent environmental pollution, it is necessary to establish a recovery mechanism for waste petroleum cracking catalysts as soon as possible and formulate relevant laws and regulations.

Cite this article

ZHAO Shen , WANG Xin , WANG Heming , WANG Peng , WANG Lu , YUE Qiang , DU Tao , CHEN Weiqiang . Dynamic material flow analysis and supply and demand management of lanthanum in China[J]. Science & Technology Review, 2022 , 40(21) : 66 -76 . DOI: 10.3981/j.issn.1000-7857.2022.21.007

References

[1] 张亮亮, 王岩.“工业味精” 生产亟待政府呵护[J]. 中国国情国力, 2007(2): 51-53.
[2] 窦学宏. 稀土元素镧及其应用[J]. 稀土信息, 2005(2): 33-34.
[3] 亨德森. 稀土元素地球化学[M]. 田丰, 施烺, 译. 北京: 地质出版社, 1989.
[4] 陈润艳. 稀土污染与环境保护[J]. 金属功能材料, 2019, 26(5): 60-68.
[5] 张苏江, 张立伟, 张彦文, 等. 国内外稀土矿产资源及其分布概述[J]. 无机盐工业, 2020, 52(1): 9-16.
[6] 李振民, 刘一力, 孙菊英, 等. 世界稀土需求趋势分析[J]. 稀土, 2017, 38(3): 149-158.
[7] Liu Q, Liu L, Liu X, et al. Building stock dynamics and the impact of construction bubble and bust on employment in China[J]. Journal of Industrial Ecology, 2021, 25(6): 1631-1643.
[8] Ciacci L, Vassura I, Cao Z, et al. Recovering the "new twin": Analysis of secondary neodymium sources and recycling potentials in Europe[J]. Resources, Conservation and Recycling, 2019, 142: 143-152.
[9] Gloser S, Soulier M, Tercero Espinoza L A. Dynamic analysis of global copper flows. Global stocks, postconsumer material flows, recycling indicators, and uncertainty evaluation[J]. Environmental Science & Technology, 2013, 47(12): 6564-6572.
[10] Wang C, Zhao L, Lim M K, et al. Structure of the global plastic waste trade network and the impact of China's import Ban[J]. Resources, Conservation and Recycling, 2020, 153: 104591.
[11] Zhang C, Liu B, Li N, et al. Resource nexus for sustainable development: Status quoand prospect[J]. Chinese Science Bulletin, 2020, 66(26): 3426-3440.
[12] Wang P, Jiang Z Y, Geng X Y, et al. Dynamic material flow analysis of steel resources in China based on circular economy theory[J]. Advanced Materials Research, 2013, 813: 64-71.
[13] 张超, 王韬, 陈伟强, 等. 中国钢铁长期需求模拟及产能过剩态势评估[J]. 中国人口·资源与环境, 2018, 28(10): 169-176.
[14] 李新, 任强, 罗胤达, 等. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018, 40(12): 2329-2340.
[15] Chen W Q, Shi L. Analysis of aluminum stocks and flows in mainland China from 1950 to 2009: Exploring the dynamics driving the rapid increase in China's aluminum production[J]. Resources Conservation and Recycling, 2012, 65: 18-28.
[16] Yue Q, Lu Z W. Aluminum flow analysis for the life cycle of aluminum products[J]. Advanced Materials Research, 2010, 113-116: 2287-2291.
[17] Liu G, Müller D B. Mapping the global journey of anthropogenic aluminum: A trade-linked multilevel material flow analysis[J]. Environmental Science & Technology, 2013, 47(20): 11873-11881.
[18] Rauch J N, Graedel T E. Earth's anthrobiogeochemical copper cycle[J]. Global Biogeochemical Cycles, 2007, 21(2): 1-13.
[19] Graedel T E, van Beers D, Bertram M, et al. The multilevel cycle of anthropogenic zinc[J]. Journal of Industrial Ecology, 2005, 9(3): 67-90.
[20] Graedel T E, Bertram M, Reck B. Exploratory data analysis of the multilevel anthropogenic zinc cycle[J]. Journal of Industrial Ecology, 2005, 9(3): 91-108.
[21] Johnson J, Jirikowic J, Bertram M, et al. Contemporary anthropogenic silver cycle: A multilevel analysis[J]. Environmental Science & Technology, 2005, 39(12): 4655- 4665.
[22] Johnson J, Schewel L, Graedel T E. The contemporary anthropogenic chromium cycle[J]. Environmental Science & Technology, 2006, 40(22): 7060-7069.
[23] Reck B K, Müeller D B, Rostkowski K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling [J]. Environmental Science & Technology, 2008, 42(9): 3394-3400.
[24] Mao J S, Dong J, Graedel T E. The multilevel cycle of anthropogenic lead I. Methodology[J]. Resources Conservation and Recycling, 2008, 52(8-9): 1058-1064.
[25] Yang J, Li X, Xiong Z, et al. Environmental pollution effect analysis of lead compounds in China based on life cycle[J]. International Journal of Environmental Research and Public Health, 2020, 17(7): 2184.
[26] Tang L, Wang P, Graedel T E, et al. Refining the understanding of China's tungsten dominance with dynamic material cycle analysis[J]. Resources, Conservation and Recycling, 2020, 158: 104829.
[27] Schneider D W. Book review: Metabolism of the anthroposphere: Analysis, evaluation, design[J]. Journal of Planning Education and Research, 2013, 33(4): 497-499.
[28] Du X, Graedel T E. Global in-use stocks of the rare Earth elements: A first estimate[J]. Environmental Science & Technology, 2011, 45(9): 4096-4101.
[29] Du X, Graedel T E. Uncovering the end uses of the rare earth elements[J]. Science of the Total Environment, 2013, 461-462: 781-784.
[30] Fishman T, Myers R, Rios O, et al. Implications of emerging vehicle technologies on rare earth supply and demand in the United States[J]. Resources, 2018, 7(1): 9.
[31] Wang Q C, Wang P, Qiu Y, et al. Byproduct surplus: Lighting the depreciative europium in China's rare earth boom[J]. Environmental Science & Technology, 2020, 54(22): 14686-14693.
[32] Guyonnet D, Planchon M, Rollat A, et al. Material flow analysis applied to rare earth elements in Europe[J]. Journal of Cleaner Production, 2015, 107: 215-228.
[33] Chen W J, Wang Z H, Gong X Z, et al. Substance flow analysis of rare earth lanthanum in China[J]. Materials Science Forum, 2017, 898: 2455-2463.
[34] 张臻悦, 何正艳, 徐志高, 等. 中国稀土矿稀土配分特征[J]. 稀土, 2016, 37(1): 121-127.
[35] Survey U S G. Mineral commodity summaries 2019[EB/ OL]. [2022-05-20]. https://www.usgs.gov/search?keywords=Mineral+commodity+summaries+2019.
[36] Comtrade U N. International trade statistics database[EB/ OL]. [2022-05-20]. https://comtrade.un.org.
[37] 中华人民共和国工业和信息化部. 稀土产业发展计划(2016—2020年)[EB/OL]. [2022-05-20]. http://www.gov.cn/xinwen/2016-10/18/content_5120998.htm.
[38] 张晓微, 黄颖莎. 光学行业研究报告[EB/OL]. [2022-05-20]. https://www.tfzq.com/ueditor/php/upload/file/201-80417/1523929030331344.pdf.
[39] 张文毓. 稀土催化材料的研究进展与应用[J]. 精细石油化工进展, 2020, 21(3): 35-39, 53.
[40] 赖新暖, 宰云肖, 韩建崴, 等. 混合电动汽车用镍氢动力电池的寿命试验[J]. 广东化工, 2013, 40(12): 58-59.
[41] 周亚辉, 周松涛, 周敏. 钢铁企业滚动轴承使用寿命探讨[J]. 机械管理开发, 2018, 33(8): 78-79, 112.
[42] 孔令文. 数码相机电池如何延寿[J]. 山东农机化, 2010(2): 32.
[43] 苏利平, 高爽. 改革开放四十年以来稀土产业政策演进历程与启示展望[J]. 中国矿业, 2021, 30(5): 20-26, 35.
[44] 贾涛, 刘小芳.“新中国70年” 中国稀土产业回顾与展望[J]. 稀土信息, 2019(9): 12-19.
[45] 中华人民共和国国务院新闻办公室. 中国的稀土状况与 政策( 白皮 书) [EB/OL]. [2022-10-20]. http://www.scio.gov.cn/ztk/dtzt/77/3/Document/1175752/1175752.htm.
[46] 苏晓云, 郭莉芳. 我国汽车尾气净化稀土催化剂研究应用现状及发展趋势[J]. 稀土, 2006, 27(5): 3.
[47] 张莉, 孙兆林, 王久江, 等. 稀土在催化裂化领域中的研究进展[J]. 稀土, 2020, 41(3): 117-128.
[48] 曹生彪, 皇甫益. 混合动力汽车用镍氢电池的现状及发展分析[J]. 电池, 2016, 46(5): 289-291.
[49] Hu X, Wang C, Zhu X, et al. Trade structure and risk transmission in the international automotive Li-ion batteries trade[J]. Resources, Conservation and Recycling, 2021, 170: 105591.
[50] 墨柯. 锂电市场发展回顾及趋势预测[J]. 新材料产业, 2015(9): 2-7.
[51] 易璐, 郑明贵. 中国稀土开采总量控制政策效应评估[J]. 有色金属科学与工程, 2021, 12(2): 120-126.
[52] 王慧娟, 缪羽. 稀土元素镧在医学领域的应用与研究[J]. 内蒙古医学杂志, 2020, 52(3): 278-280.
[53] 崔小明. 稀土化合物在橡胶领域中的应用研究进展[J]. 橡胶科技, 2015, 13(9): 11-16.
[54] 唐定骧, 涂铭旌, 陈云贵, 等. 镧镨铈新型混合稀土金属应用研究进展[C]//中国稀土学会第四届学术年会. 北京: 中国稀土学会, 2000: 709-715.
[55] Bhandari C, Flatté M E, Paudyal D. Enhanced magnetic anisotropy in lanthanum M-type hexaferrites by quantum-confined charge transfer[J]. Physical Review Materials, 2021, 5(9): 094415.
[56] Wang P, Wang H, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022(3): 392-395.
[57] 刘贵清, 曲志平, 张磊. 从废催化剂中回收稀土的现状与展望[J]. 中国资源综合利用, 2014, 32(6): 27-29.
[58] 刘腾, 邱兆富, 杨骥, 等. 废FCC催化剂的形态、 成分分析及环境风险评价[J]. 无机盐工业, 2016, 48(11): 71- 74.
[59] 张宏哲. 催化裂化废催化剂综合利用技术[J]. 化工进展, 2016, 35(增刊2): 358-362.
[60] 赵哲萱, 邱兆富, 杨骥, 等. 从废FCC催化剂和废汽车尾气净化催化剂中回收稀土的研究进展[J]. 化工环保, 2015, 35(6): 603-608.
[61] 苑志伟, 孟佳, 赵世伟. 从废FCC催化剂中回收稀土的研究[J]. 石油炼制与化工, 2010, 41(10): 33-39.
[62] Zhou Y, Schulz S, Lindoy L F, et al. Separation and recovery of rare earths by in situ selective electrochemical oxidation and extraction from spent fluid catalytic cracking (FCC) catalysts[J]. Hydrometallurgy, 2020, 194: 105300.
[63] Wang J Y, Huang X W, Wang L S, et al. Kinetics study on the leaching of rare earth and aluminum from FCC catalyst waste slag using hydrochloric acid[J]. Hydrometallurgy, 2017, 171: 312-319.
Outlines

/