Exclusive: Primary mineral product supply security strategy

Dynamic material flow and key driving factors of lithium in China

  • ZHAO Lianzheng ,
  • WANG Peng ,
  • TANG Linbin ,
  • WANG Heming ,
  • YUE Qiang ,
  • CHEN Weiqiang ,
  • DU Tao
Expand
  • 1. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China;
    2. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. Ganjiang Innovation Research Institute, Chinese Academy of Sciences, Ganzhou 341000, China

Received date: 2022-06-03

  Revised date: 2022-10-21

  Online published: 2022-11-30

Abstract

To clarify the strategic significance of the flow, stock, and supply and demand patterns of lithium metal in new energy vehicle batteries and to guarantee the national energy transition and development of new energy vehicles, a Chinese lithium material flow analysis framework based on whole life cycle is constructed. The evolution of flow, stock, and supply and demand patterns of lithium elements driven by new energy vehicles in China from 2000 to 2020 is analyzed. The conclusions are as follows. Firstly, from the perspective of flow rate, lithium supply was dominated by lithium ore supply from 2000 to 2020;.the usage of the primary resources (349000 t) had a large increase while the supply of secondary resources (8000 t) was small; the driving force for the processing and usage of all kinds of lithium products changed from traditional lithium industrial products and 3C products (mobile phones, tablets, and laptops) to new energy vehicles. Secondly, from the perspective of stock, the stock of lithium products in use increased differently, among which the growth rate of power battery products ranked the first (an increase of 72000 t in 20 years), and the recycling potential was relatively large (less than 5% at present). Thirdly, from the perspective of the supply and demand pattern, the external dependence of lithium ore in China was relatively high (above 75%) and would remain high; China mainly imported industrial-grade lithium carbonate from developing countries in South America, and exported battery-grade lithium hydroxide to developed countries such as Japan, South Korea, and the United States.

Cite this article

ZHAO Lianzheng , WANG Peng , TANG Linbin , WANG Heming , YUE Qiang , CHEN Weiqiang , DU Tao . Dynamic material flow and key driving factors of lithium in China[J]. Science & Technology Review, 2022 , 40(21) : 100 -109 . DOI: 10.3981/j.issn.1000-7857.2022.21.010

References

[1] Zhang C, Liu B B, Li N, et al. Resource nexus for sustainable development: Status quo and prospect[J]. Chinese Science Bulletin, 2020, 66(26): 3426-3440.
[2] Wang P, Wang H, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022, 2(3): 392-395.
[3] 王钊越. 金属锂的应用及其市场[J]. 新疆有色金属, 2018, 41(增刊1): 56-58.
[4] 徐翠云. 锂在陶瓷工业中的应用[J]. 江苏陶瓷, 1991, 24(3): 34.
[5] 孙元碧, 付玉娥. 新型通用锂基润滑脂的制备研究[J]. 广州化工, 2013, 41(13): 129-130.
[6] Sun X, Liu G, Hao H, et al. Modeling potential impact of COVID-19 pandemic on global electric vehicle supply chain[J]. iScience, 2022, 25(3): 103903.
[7] 郑人瑞, 唐金荣, 周平, 等. 我国锂资源供应风险评估[J]. 中国矿业, 2016, 25(12): 30-37.
[8] 沈镭, 钟帅, 胡纾寒. 全球变化下资源利用的挑战与展望[J]. 资源科学, 2018, 40(1): 1-10.
[9] 牛桂敏. 循环经济理论对传统经济学价值理论的创新[J]. 天津社会科学, 2008(4): 81-83.
[10] 郭学益, 田庆华. 有色金属资源循环理论与方法概述[J]. 中国有色金属, 2011(增刊2): 76-78.
[11] 李新, 任强, 罗胤达, 等. 基于物质流分析的中国机械行业铁资源代谢过程研究[J]. 资源科学, 2018, 40(12): 2329-2340.
[12] Song L, Wang P, Hao M, et al. Mapping provincial steel stocks and flows in China: 1978—2050[J]. Journal of Cleaner Production, 2020, 262: 121393
[13] 张元林, 张上, 李金惠, 等. 中国钢结构建筑的物质流分析[J]. 资源科学, 2021, 43(3): 546-555.
[14] 郝敏, 陈伟强, 马梓洁, 等. 2000—2015年中国铜废碎料贸易及效益风险分析[J]. 资源科学, 2020, 42(8): 1515-1526
[15] Hao M, Wang P, Song L L, et al. Spatial distribution of copper in-use stocks and flows in China: 1978—2016[J]. Journal of Cleaner Production, 2020, 261: 121260.
[16] Wang C, Huang X, Lim M K, et al. Mapping the structural evolution in the global scrap copper trade network [J]. Journal of Cleaner Production, 2020, 275: 122934.
[17] 刘立涛, 赵慧兰, 刘晓洁, 等. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534.
[18] Chen W Q. Dynamic product-level analysis of in-use aluminum stocks in the United States[J]. Journal of Industrial Ecology, 2018, 22(6): 1425-1435.
[19] Tian H Z, Lu L, Cheng K, et al. Anthropogenic atmospheric nickel emissions and its distribution characteristics in China[J]. Science of the Total Environment, 2012, 417-418: 148-157.
[20] Nakajima K, Otsuka Y, Iwatsuki Y, et al. Global supply chain analysis of nickel: Importance and possibility of controlling the resource logistics[J]. Metallurgical Research & Technology, 2014, 111(6): 339-346.
[21] Robotin B, Ispas A, Coman V, et al. Nickel recovery from electronic waste II electrodeposition of Ni and NiFe alloys from diluted sulfate solutions[J]. Waste Management, 2013, 33(11): 2381-2389.
[22] Hao H, Liu Z W, Zhao F Q, et al. Material flow analysis of lithium in China[J]. Resources Policy, 2017, 51: 100- 106.
[23] Liu W Q, Liu W, Li X X, et al. Dynamic material flow analysis of critical metals for lithium-ion battery system in China from 2000—2018[J]. Resources, Conservation and Recycling, 2021, 164: 105122.
[24] Sun X, Hao H, Zhao F Q, et al. Tracing global lithium flow: A trade-linked material flow analysis[J]. Resources, Conservation and Recycling, 2017, 124: 50-61.
[25] Nigl T, Schwarz T E, Walch C, et al. Characterisation and material flow analysis of end-of-life portable batteries and lithium-based batteries in different waste streams in Austria[J]. Waste Management & Research, 2020, 38(6): 649-659.
[26] Ziemann S, Weil M, Schebek L. Tracing the fate of lithium: The development of a material flow model[J]. Resources, Conservation and Recycling, 2012, 63: 26-34.
[27] Chang T C, You S J, Yu B S, et al. A material flow of lithium batteries in Taiwan[J]. Journal of Hazardous Materials, 2009, 163(2-3): 910-915.
[28] Zeng X L, Li J H. Implications for the carrying capacity of lithium reserve in China[J]. Resources, Conservation and Recycling, 2013, 80: 58-63.
[29] Kamran M, Raugei M, Hutchinson A. A dynamic material flow analysis of lithium-ion battery metals for electric vehicles and grid storage in the UK: Assessing the impact of shared mobility and end-of-life strategies[J]. Resources, Conservation and Recycling, 2021, 167: 105412.
[30] 马哲, 李建武. 中国锂资源供应体系研究:现状、 问题与建议[J]. 中国矿业, 2018, 27(10): 1-7.
[31] 李新, 康欣宇, 林靖, 等. 中国铅资源流动及其循环效率[J]. 资源科学, 2021, 43(3): 535-545.
[32] Song J L, Yan W Y, Cao H B, et al. Material flow analysis on critical raw materials of lithium-ion batteries in China[J]. Journal of Cleaner Production, 2019, 215: 570- 581.
[33] 张江峰. 2015年中国锂产业发展概况[J]. 中国金属通报, 2016(3): 19-21.
[34] 张江峰. 2016锂电产业生产概况[J]. 中国有色金属, 2017(1): 40-41.
[35] 陈光辉. 2020年中日韩锂盐进出口情况简析[J]. 世界有色金属, 2021, 4: 1-3.
[36] Ziemann S, Müller D B, Schebek L, et al. Modeling the potential impact of lithium recycling from EV batteries on lithium demand: A dynamic MFA approach[J]. Resources, Conservation and Recycling, 2018, 133: 76-85.
[37] 我国攻克锂云母高效提锂技术[J]. 金属矿山, 2010(9): 189.
[38] 李丽旻. 金属锂涨价潮将持续至明年[N]. 2021-12-27(7).
[39] 蒋晓斌, 江健, 陈定江, 等. 中国乘用车塑料的动态物质流分析[J]. 中国环境科学, 2020, 40(9): 4106-4114.
[40] 贺娟, 钟伟, 张永辉, 等. 基于物质流和全过程管理的中国建筑垃圾资源化分析[J]. 环境工程, 2018, 36(10): 102-107.
[41] 黄莉, 李芳琴, 代涛, 等. 锂金属回收潜力研究——基于现有回收技术与工艺[J]. 矿产保护与利用, 2021(5): 31-37.
[42] 栾晓玉, 刘巍, 崔兆杰, 等. 基于物质流分析的中国塑料资源代谢研究[J]. 资源科学, 2020, 42(2): 372-382.
Outlines

/