Exclusive: Primary mineral product supply security strategy

Dynamic material flow analysis of nickel in China under the background of energy transformation

  • HUANG Yawei ,
  • TANG Linbin ,
  • WANG Heming ,
  • WANG Peng ,
  • YUE Qiang ,
  • DU Tao ,
  • CHEN Weiqiang
Expand
  • 1. State Environmental Protection Key Laboratory of Eco-Industry, Northeastern University, Shenyang 110819, China;
    2. Ganjiang Innovation Research Institute, Chinese Academy of Sciences, Ganzhou 341000, China;
    3. Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
    4. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-06-03

  Revised date: 2022-08-16

  Online published: 2022-11-30

Abstract

To reveal the trend of material flow patterns at different stages of nickel resources in China, a life-cycle material flow analysis framework of nickel is constructed based on the dynamic material flow analysis method, and the change of material flow patterns at different stages of nickel resources in China from 2000 to 2020 is calculated and analyzed. The results are as follows. From a production perspective, nickel ore demand recovered under the new energy transition with nickel recovery being 20.4% in 2020. From a consumption perspective, the battery industry in the processing stage surpassed the electroplating industry to become the second nickel consuming sector while nickel consumption of manufacturing stage in the industrial sector decreased to 28.9% in 2019, and nickel consumption of new energy vehicles increased from 4275.0 t in 2015 to 16000 t in 2020. From a trade perspective, in recent years all stages of China except manufacturing and processing stages were net imported, among which net import products of nickel and iron increased rapidly from 105.7 t in 2000 to 413000 t in 2020, with a reduction of net export stainless steel from 213000 t in 2016 to 109000 t in 2020. From a stock perspective, the change in the in-use stock of terminal consumer goods was mainly driven by the transportation industry and construction and infrastructure, and the in-use stock of new energy vehicles increased by 131 times in five years.

Cite this article

HUANG Yawei , TANG Linbin , WANG Heming , WANG Peng , YUE Qiang , DU Tao , CHEN Weiqiang . Dynamic material flow analysis of nickel in China under the background of energy transformation[J]. Science & Technology Review, 2022 , 40(21) : 110 -119 . DOI: 10.3981/j.issn.1000-7857.2022.21.011

References

[1] 张超, 刘蓓蓓, 李楠, 等. 面向可持续发展的资源关联研究: 现状与展望[J]. 科学通报, 2021, 66(26): 3426-3440.
[2] Wang P, Wang H, Chen W Q, et al. Carbon neutrality needs a circular metal-energy nexus[J]. Fundamental Research, 2022, 2(3): 392-395.
[3] Tang L, Wang P, Graedel T E, et al. Refining the understanding of China's tungsten dominance with dynamic material cycle analysis[J]. Resources, Conservation and Recycling, 2020, 158: 104829.
[4] Chen W Q. Dynamic product-level analysis of in-use aluminum stocks in the United States[J]. Journal of Industrial Ecology, 2018, 22(6): 1425-1435.
[5] Chen W Q, Graedel T E. Dynamic analysis of aluminum stocks and flows in the United States: 1900—2009[J]. Ecological Economics, 2012, 81: 92-102.
[6] Song L, Wang P, Hao M, et al. Mapping provincial steel stocks and flows in China: 1978—2050[J]. Journal of Cleaner Production, 2020, 262: 121393.
[7] 刘立涛, 赵慧兰, 刘晓洁, 等. 1995—2015年美国钴物质流演变[J]. 资源科学, 2021, 43(3): 524-534.
[8] Sun X, Hao H, Liu Z, et al. Tracing global cobalt flow: 1995—2015[J]. Resources, Conservation and Recycling, 2019, 149: 45-55.
[9] 简小枚, 汪鹏, 陈玮, 等. 中国钒资源全生命周期动态物质流分析[J]. 科技导报, 2022, 40(8): 127-136.
[10] 陈玮, 汪鹏, 赵燊, 等. 稀土元素物质流分析研究进展[J]. 科技导报, 2022, 40(8): 14-26.
[11] 赵燊, 汪鹏, 王路, 等. 美国关键矿产战略的演化特征及启示[J]. 科技导报, 2022, 40(8): 91-103.
[12] Hao M, Wang P, Song L, et al. Spatial distribution of copper in-use stocks and flows in China: 1978—2016[J]. Journal of Cleaner Production, 2020, 261: 121-260.
[13] 马玉芳, 沙景华, 闫晶晶, 等. 中国镍资源供应安全评价与对策研究[J]. 资源科学, 2019, 41(7): 1317-1328.
[14] 孙涛, 王登红, 娄德波, 等. 中国镍矿成矿规律初探[J]. 地质学报, 2014, 88(12): 2227-2251.
[15] 宓奎峰, 王建平, 柳振江, 等. 我国镍矿资源形势与对策[J]. 中国矿业, 2013, 22(6): 6-10.
[16] 余良晖. 国内外镍资源供需格局分析[J]. 矿产保护与利用, 2019, 39(1): 155-162.
[17] 张佳东, 于汶加, 代涛. 中国镍资源的供需分析[J]. 地质评论, 2013, 59: 58-59.
[18] Wang S, Yu J. Evaluating the electric vehicle popularization trend in China after 2020 and its challenges in the recycling industry[J]. Waste Management & Research, 2021, 39(6): 818-827.
[19] Olafsdottir A H, Sverdrup H U. Modelling global nickel mining, supply, recycling, stocks-in-use and price under different resources and demand assumptions for 1850-2200[J]. Mining, Metallurgy and Exploration, Mining, Metallurgy & Exploration, 2021, 38(2): 819-840.
[20] 曹洋. 废不锈钢产业链调研情况分析[J]. 资源再生, 2018(8): 30-33.
[21] 郑淑芳, 陈小娟, 魏富娟, 等. 钴镍金属二次资源回收利用现状及展望[J]. 化工管理, 2020(7): 107-108.
[22] Song X, Hu S, Chen D, et al. Estimation of waste battery generation and analysis of the waste battery recycling system in China[J]. Journal of Industrial Ecology, 2017, 21(1): 57-69.
[23] 程明明. 中国镍铁的发展现状、 市场分析与展望[J]. 矿业快报, 2008(8): 1-3.
[24] Nakajima K, Ohno H, Kondo Y, et al. Simultaneous material flow analysis of nickel, chromium, and molybdenum used in alloy steel by means of input-output analysis[J]. Environmental Science and Technology, 2013, 47(9): 4653-4660.
[25] Reck B K, Rotter V S. Comparing growth rates of nickel and stainless steel use in the early 2000s[J]. Journal of Industrial Ecology, 2012, 16(4): 518-528.
[26] Song J, Yan W, Cao H, et al. Material flow analysis on critical raw materials of lithium-ion batteries in China [J]. Journal of Cleaner Production, 2019, 215: 570-581.
[27] 刘婉蓉, 王玉晶, 王海峰, 等. 涉重金属电池环境管理现状及对策[J]. 电池, 2020, 50(6): 597-599.
[28] 刘怡君, 彭频. 循环经济视角下车用动力电池逆向物流链的优化[J]. 江西理工大学学报, 2015, 36(6): 61- 65.
[29] 康浩, 朱素冰. 我国锂离子电池正极材料发展历程回顾[J]. 新材料产业, 2019(10): 21-27.
[30] 卢强. 电动汽车动力电池全生命周期分析与评价[D]. 长春: 吉林大学, 2014.
[31] 宋永华, 阳岳希, 胡泽春. 电动汽车电池的现状及发展趋势[J]. 电网技术, 2011, 35(4): 1-7.
[32] Wang S, Yu J. A comparative life cycle assessment on lithium-ion battery: Case study on electric vehicle battery in China considering battery evolution[J]. Waste Management and Research, 2021, 39(1): 156-164.
[33] 杨婧, 孙强, 汪涛, 等. 基于物质流分析的电镀行业重金属减排研究[J]. 电镀与涂饰, 2014, 33(8): 346-349.
[34] 杨婧, 温勇, 幸毅明. 电镀行业镍物质流模型的建立及减排对策[J]. 材料保护, 2013, 46(1): 13-15, 18, 7.
[35] Huang C L, Vause J, Ma H W, et al. Substance flow analysis for nickel in mainland China in 2009[J]. Journal of Cleaner Production, 2014, 84(1): 450-458.
[36] Zeng X, Zheng H, Gong R, et al. Uncovering the evolution of substance flow analysis of nickel in China[J]. Resources, Conservation and Recycling, 2018, 135: 210- 215.
[37] Zeng X, Xu M, Li J. Examining the sustainability of China's nickel supply: 1950—2050[J]. Resources, Conservation and Recycling, 2018, 139: 188-193.
[38] Reck B K, Müller D B, rostkowski K, et al. Anthropogenic nickel cycle: Insights into use, trade, and recycling[J]. Environmental Science and Technology, 2008, 42(9): 3394-3400.
[39] 葵刘, 华龙, 梁少俊. 镍的应用[J]. 化学教育, 2016, 37(18): 10-14.
[40] US Geological Survey. Mineral Commodity Summaries, 2020[R]. Reston: US Geological Survey, 2020.
[41] US Geological Survey. Mineral Commodity Summaries, 2019[R]. Reston: US Geological Survey, 2019.
[42] US Geological Survey. Mineral Commodity Summaries, 2018[R]. Reston: US Geological Survey, 2018.
[43] US Geological Survey. Mineral Commodity Summaries, 2017[R]. Reston: US Geological Survey, 2017.
[44] 中国有色金属工业协会. 中国有色金属工业年鉴[M]. 北京: 中国有色金属杂志社, 2020.
[45] 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020.
[46] 中国工程机械协会. 中国机械工业年鉴[M]. 北京: 机械工业出版社, 2020.
[47] 中华人民共和国海关总署. 中国海关统计年鉴[M]. 北京: 中国海关出版社, 2020.
[48] UN Comtrade. International trade statistics database[EB/ OL]. [2022-07-30]. https://comtrade.un.org.
[49] 曾祥婷, 许虹, 田尤, 等. 中国镍资源产业现状及可持续发展策略[J]. 资源与产业, 2015, 17(4): 4-9.
[50] 孔令湖, 邓文兵, 尚磊. 中国镍矿资源现状与国家级镍矿床实物地质资料筛选[J]. 有色金属(矿山部分) , 2021, 73(2): 79-86.
[51] 娄德波, 孙艳, 山成栋, 等. 中国镍矿床地质特征与矿产预测[J]. 地学前缘, 2018, 25(3): 67-81.
[52] 刘贵清, 张邦胜, 张帆, 等. 中国镍矿资源与市场分析[J]. 中国资源综合利用, 2020, 38(7): 102-105.
Outlines

/