Exclusive: Inheritance and Clinical Practice of Traditional Chinese Medicine

The significance of coagulation dysfunction in the formation and treatment of cardiac function injury in sepsis

  • XU Xiaolong ,
  • ZHANG Mina ,
  • LI Zhenxuan ,
  • LIU Qingquan
Expand
  • 1. Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China;
    2. Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China;
    3. Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing 100010, China

Received date: 2022-06-13

  Revised date: 2022-08-18

  Online published: 2022-12-12

Abstract

Sepsis is a difficult problem in the field of acute and critical illness. The heart is the most susceptible organ in the pathogenesis of sepsis. Cardiac function injury and coagulation disorder are common complication in patients with severe sepsis. COVID-19 can cause viral sepsis, often accompanied by coagulation disorders and myocardial damage. This paper introduces the pathogenesis of traditional Chinese medicine (TCM) of sepsis and the pathophysiology of western medicine, and the significance of coagulation disorder in the formation of sepsis is analyzed. Through discussing the treatment means of traditional Chinese and western medicines it can be seen that TCM has certain advantages in infectious diseases and coagulation dysfunction, and can supplement the deficiency of western medicine treatment to a certain extent. However, further systematic studies are still needed to clarify the effectiveness of TCM treatment.

Cite this article

XU Xiaolong , ZHANG Mina , LI Zhenxuan , LIU Qingquan . The significance of coagulation dysfunction in the formation and treatment of cardiac function injury in sepsis[J]. Science & Technology Review, 2022 , 40(23) : 49 -57 . DOI: 10.3981/j.issn.1000-7857.2022.23.006

References

[1] Shankar-Hari M, Phillips G S, Levy M L, et al. Developing a new definition and assessing new clinical criteria for septic shock:For the third international consensus definitions for sepsis and septic shock (Sepsis-3)[J]. The Journal of the American Medical Association, 2016, 315(8):775-787.
[2] Rizzo A N, Dudek S M. Endothelial glycocalyx repair:Building a wall to protect the lung during sepsis[J]. American Journal of Respiratory Cell and Molecular Biology, 2017, 56(6):687-688.
[3] Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis:Observations and hypotheses[J]. Lancet, 2020, 395(10235):1517-1520.
[4] Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395(10223):497-506.
[5] Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China:A descriptive study[J]. Lancet, 2020, 395(10223):507-513.
[6] Iba T, Levy J H, Connors J M, et al. The unique characteristics of COVID-19 coagulopathy[J]. Critical Care, 2020, 24(1):360.
[7] 张二飞,赵晓英,张莉,等.脓毒症引起心肌病的研究进展[J].中国心血管杂志, 2018, 23(5):433-436.
[8] Barnaby D P, Fernando S M, Ferrick K J, et al. Use of the low-frequency/high-frequency ratio of heart rate variability to predict short-term deterioration in emergency department patients with sepsis[J]. Emergency Medicine Journal, 2018, 35(2):96-102.
[9] Vallabhajosyula S, Jentzer J C, Geske J B, et al. New-onset heart failure and mortality in hospital survivors of sepsis-related left ventricular dysfunction[J]. Shock, 2018, 49(2):144-149.
[10] Liu P P, Blet A, Smyth D, et al. The science underlying COVID-19:Implications for the cardiovascular system[J]. Circulation, 2020, 142(1):68-78.
[11] Xu S C, Wu W, Zhang S Y. Manifestations and mechanism of SARS-CoV2 mediated cardiac injury[J]. International Journal of Biological Sciences, 2022, 18(7):2703-2713.
[12] 王今达,李志军,李银平.从"三证三法"辨证论治脓毒症[J].中国危重病急救医学, 2006(11):643-644.
[13] 曹书华,王今达,李银平.从"菌毒并治"到"四证四法"——关于中西医结合治疗多器官功能障碍综合征辨证思路的深入与完善[J].中国危重病急救医学, 2005(11):7-9.
[14] 刘清泉.对脓毒症中医病机特点及治法的认识[J].北京中医, 2007(4):198-200.
[15] 黎辉,武紫晖,张晓云.脓毒症的中医研究进展[J].中国中医急症, 2018, 27(9):1681-1683.
[16] 王东东,吴彦青,王晓鹏,等.脓毒症心肌损伤机制及中医药诊疗现状[J].北京中医药, 2018, 37(2):186-191.
[17] 王雪蕊,徐霄龙,白云静,等.强心一号复方对脓毒症小鼠心脏的保护作用及机制[J].中医杂志, 2019, 60(24):2133-2137.
[18] 夏文广,安长青,郑婵娟,等.中西医结合治疗新型冠状病毒肺炎34例临床研究[J].中医杂志, 2020, 61(5):375-382.
[19] 陈剑明,陈腾飞,连博,等.新型冠状病毒肺炎中医证候和证候要素分布特点的文献分析[J].首都医科大学学报, 2020, 41(6):901-907.
[20] Burzynski L C, Humphry M, Pyrillou K, et al. The coagulation and immune systems are directly linked through the activation of Interleukin-1α by thrombin[J]. Immunity, 2019, 50(4):1033-1042.
[21] Carré J E, Orban J C, Re L, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis[J]. American Journal of Respiratory and Critical Care Medicine, 2010, 182(6):745-751.
[22] 甄军海,李莉,严静.脓毒症心肌损伤生物标志物的研究进展[J].中华危重病急救医学, 2018, 30(7):699-702.
[23] Zheng Y Y, Ma Y T, Zhang J Y, et al. COVID-19 and the cardiovascular system[J]. Nature Reviews Cardiology, 2020, 17(5):259-260.
[24] Hamming I, Timens W, Bulthuis M L, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis[J]. Journal of Pathology, 2004, 203(2):631-637.
[25] 曾文美,毛璞,黄勇波,等.脓毒症预后影响因素分析及预后价值评估[J].中国中西医结合急救杂志, 2015, 22(2):118-123.
[26] Gaertner F, Massberg S. Blood coagulation in immunothrombosis-At the frontline of intravascular immunity[J]. Seminars in Immunology, 2016, 28(6):561-569.
[27] Han H, Yang L, Liu R, et al. Prominent changes in blood coagulation of patients with SARS-CoV-2 infection[J]. Clinical Chemistry and Laboratory Medicine, 2020, 58(7):1116-1120.
[28] Arachchillage D, Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia[J]. Journal of Thrombosis and Haemostasis, 2020, 18(5):1233-1234.
[29] Luo D, Szaba F M, Kummer L W, et al. Protective roles for fibrin, tissue factor, plasminogen activator inhibitor-1, and thrombin activatable fibrinolysis inhibitor, but not factor XI, during defense against the gram-negative bacterium Yersinia enterocolitica[J]. The Journal of Immunology, 2011, 187(4):1866-1876.
[30] Massberg S, Grahl L, von Bruehl M L, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases[J]. Nature Medicine, 2010, 16(8):887-896.
[31] Ito T, Thachil J, Asakura H, et al. Thrombomodulin in disseminated intravascular coagulation and other critical conditions-a multi-faceted anticoagulant protein with therapeutic potential[J]. Critical Care, 2019, 23(1):280.
[32] Veach R A, Liu Y, Zienkiewicz J, et al. Survival, bacterial clearance and thrombocytopenia are improved in polymicrobial sepsis by targeting nuclear transport shuttles[J]. PLoS One, 2017, 12(6):e0179468.
[33] Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China:A single-centered, retrospective, observational study[J]. Lancet Respiratory Medicine, 2020, 8(5):475-481.
[34] Wan S, Yi Q, Fan S, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients[J]. British Journal of Haematology, 2020, 189(3):428-437.
[35] 姚咏明,柴家科,林洪远.现代脓毒症理论与实践[M].北京:科学出版社, 2005.
[36] Suffredini A F. Myocardial dysfunction in sepsis:Clinical and experimental investigations[J]. Schweizerische Medizinische Wochenschrift, 1998, 128(39):1444-1452.
[37] 中国医师协会急诊医师分会,中国研究型医院学会休克与脓毒症专业委员会.中国脓毒症/脓毒性休克急诊治疗指南(2018)[J].临床急诊杂志, 2018, 19(9):567-588.
[38] Rhodes A, Evans L E, Alhazzani W, et al. Surviving sepsis campaign:International guidelines for management of sepsis and septic shock:2016[J]. Critical Care Medicine, 2017, 45(3):486-552.
[39] Stratton L, Berlin D A, Arbo J E. Vasopressors and inotropes in sepsis[J]. Emergency Medicine Clinics of North America, 2017, 35(1):75-91.
[40] 陆智炜,何群,蔡继明.左西孟旦早期应用对脓毒性休克患者的心肌抑制和血流动力学影响[J].海峡药学, 2020, 32(12):135-137.
[41] Meng J B, Hu M H, Lai Z Z, et al. Levosimendan versus dobutamine in myocardial injury patients with septic shock:A randomized controlled trial[J]. Medical Science Monitor, 2016(22):1486-1496.
[42] 何保杰,李保林,孙玉青.美托洛尔联合瑞舒伐他汀对脓毒症相关性心肌损伤的影响[J].实用中西医结合临床, 2020, 20(11):65-67.
[43] 王昆仑,莫为春,高明强,等.瑞舒伐他汀钙对老年脓毒症模型大鼠急性肺损伤的干预作用[J].中国老年学杂志, 2017, 37(11):2632-2633.
[44] The Lancet Haematology. COVID-19 coagulopathy:An evolving story[J]. Lancet Haematology, 2020, 7(6):e425.
[45] 彭锦,杨光虎,王亨,等.早期连续性肾脏替代治疗严重脓毒症合并急性左心衰患者的疗效[J].中华医院感染学杂志, 2020, 30(7):1007-1011.
[46] Wada K, Bunya N, Kakizaki R, et al. Successful use of veno-arterial extracorporeal membrane oxygenation for septic cardiomyopathy in a patient with pre-existing chronic heart failure[J]. Acute Medicine&Surgery, 2019, 6(3):301-304.
[47] 李元塔,周广裕,莫俊德.主动脉内球囊反搏术在脓毒性休克中的临床应用[J].沈阳医学院学报, 2016, 18(4):265-266.
[48] 李承羽,张晓雨,刘斯,等.血必净注射液治疗新型冠状病毒感染的肺炎(COVID-19)证据基础及研究前瞻[J].世界科学技术-中医药现代化, 2020, 22(2):242-247.
[49] 李旭,陈岩.血必净注射液治疗脓毒症心肌损伤临床观察[J].中国中医急症, 2016, 25(8):1582-1584.
[50] 陈德珠,钟建,冯艳,等.血必净注射液对脓毒症性心肌功能障碍的临床干预研究[J].哈尔滨医药, 2019, 39(6):549-550.
[51] 黄泽清,胡铁宏.参麦注射液的药理和临床研究进展[J].临床医药文献电子杂志, 2017, 4(14):2762-2763.
[52] 李兴华,程连房,李桂仙,等.心脉隆注射液治疗脓毒症性心功能障碍的疗效观察[J].世界中西医结合杂志, 2019, 14(12):1716-1719.
[53] 韩桢,王国兴.芪参活血颗粒在治疗脓毒症合并心肌损伤中的作用[J].中国医师杂志, 2020, 22(1):26-28.
[54] He S, Zhao J, Xu X, et al. Uncovering the molecular mechanism of the Qiang-Xin 1 Formula on sepsis-induced cardiac dysfunction based on systems pharmacology[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020:3815185.
[55] 邵丹,吴晖,郑剑珍,等.补阳还五汤对脓毒症心肌损伤患者T淋巴细胞亚群的影响[J].心血管病防治知识(学术版), 2019, 9(17):49-51.
[56] 龙敏,张玉琴,岳煜,等.黄连解毒汤联合西药治疗脓毒症心肌损伤疗效研究[J].陕西中医, 2022, 43(3):329-333.
[57] 周凤华,程赛博,张宇,等.黄连解毒汤通过调节性T细胞产生抗动脉粥样硬化作用[J].中国实验动物学报, 2016, 24(3):233-238.
[58] 晋金兰,张洪,刘倩,等.黄连素对脓毒症大鼠心肌损伤和心功能的保护作用及机制[J].中华医学杂志, 2020, 100(35):2779-2784.
[59] 李想,杨贵霞,沈锋,等.黄连素剂量依赖性抑制脂多糖刺激下大鼠Ⅱ型肺泡上皮细胞促凝和纤溶抑制因子的表达[J].中华危重病急救医学, 2021, 33(1):53-58.
[60] 林青伟,宋景春,曾庆波,等.大黄素对脓毒症大鼠凝血紊乱治疗的作用[J].东南国防医药, 2018, 20(5):464-470.
[61] 徐瑞明,邵峥谊,王大为.大黄素对脓毒症大鼠心肌损伤的保护作用[J].西部医学, 2020, 32(10):1443-1446.
[62] 洪秀芳,李莉,杨舟鑫,等.芍药苷干预对脓毒症大鼠心肌损伤的影响[J].中华内科杂志, 2022, 61(6):652-658.
[63] 杨澍,史海雯,高秀清,等.天然产物抗凝血作用研究进展[J].天津中医药, 2014, 31(5):318-320.
[64] 李青松,陈俊杰,李永宁,等.姜黄素抑制NLRP3炎症小体减轻早期脓毒症大鼠心肌细胞损伤的机制研究[J].中华急诊医学杂志, 2022, 31(2):173-178.
[65] 吴柳,蒋永艳,刘微,等.槲皮素通过PI3K/AKT/mTOR通路减轻脓毒症小鼠心肌损伤[J].中国急救医学, 2021, 41(3):238-243.
[66] 张志伟,赵永娟,叶金梅,等.人参皂苷Rg_2对内毒素性血管内凝血致心肌损伤及血液流变学的影响[J].中草药, 2002(9):49-51.
[67] 袁瑶薇,王文宇,白秀萍,等.人参皂苷Rg3通过调节自噬减轻脓毒症心肌损伤[J].现代生物医学进展, 2022, 22(8):1419-1423.
[68] 吴梅秋,邱名耀,林先萍,等.人参总皂苷经HIF-1α/HO-1信号通路减轻脓毒症大鼠心肌损伤的机制研究[J].中国急救医学, 2021, 41(3):244-249.
[69] 孙永,史兆博,刘美香,等.山药多糖对脓毒症大鼠心肌损伤及JAK2/STAT3信号通路的影响[J].中国动脉硬化杂志, 2022, 30(8):669-675.
[70] 高原,吕长俊.脓毒症与凝血-炎症网络研究进展[J].滨州医学院学报, 2010, 33(1):60-62.
[71] 戴林峰,王醒.脓毒症与凝血功能异常[J].东南大学学报(医学版), 2012, 31(3):359-362.
Outlines

/