Exclusive:Energy Strategy

Research status of solar collector types and their thermal performance enhancement technologies

  • LI Guozhu ,
  • WANG Shuai ,
  • HUANG Kailiang ,
  • LI Huixing ,
  • FENG Guohui ,
  • WANG Qingqin ,
  • SUN Zixuan ,
  • CUI Meihua
Expand
  • 1. School of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
    2. China Academy of Building Research, Beijing 100013, China

Received date: 2022-01-17

  Revised date: 2022-09-20

  Online published: 2023-01-11

Abstract

Solar collectors are the core of solar heat utilization technologies, and the thermal performance and heat collecting efficiency determines the development and popularization of solar utilization technologies. In this paper, the typical methods and application areas of solar thermal utilization are summarized, the heat collecting principles and type structures of solar collectors are described and analyzed. To improve the thermal performance of solar collectors, the latest research progress and technology trends of some specific aspect are systematically summarized, including solar collector structure optimization, new collector absorption materials, phase change energy storage technology integrated into solar collector, and solar thermal concentrating technology. Furthermore, the shortages of the current research are also pointed out and the prospects for the future research are provided.

Cite this article

LI Guozhu , WANG Shuai , HUANG Kailiang , LI Huixing , FENG Guohui , WANG Qingqin , SUN Zixuan , CUI Meihua . Research status of solar collector types and their thermal performance enhancement technologies[J]. Science & Technology Review, 2022 , 40(24) : 50 -63 . DOI: 10.3981/j.issn.1000-7857.2022.24.006

References

[1] 杨博文. 能源转型中未来主力能源发展方向探析[J]. 能源与节能, 2020(6): 49-50, 91.
[2] 蔡世杰. 太阳能利用技术研究现状及发展前景[J]. 中国高新科技, 2018(21): 50-52.
[3] 闫云飞, 张智恩, 张力, 等. 太阳能利用技术及其应用[J]. 太阳能学报, 2012, 33(Suppl 1): 47-56.
[4] 覃彪, 刘杨, 马程枫. 太阳能利用技术发展现状及前景分析[J]. 化工管理, 2017(8): 178-180.
[5] 陈晓明, 罗清海, 张锦, 等. 太阳能热水器与居住建筑热水节能[J]. 煤气与热力, 2010, 30(2): 17-21.
[6] Almasri R A, Abu-Hamdeh N H, Esmaeil K K, et al. Thermal solar sorption cooling systems-A review of principle, technology, and applications[J]. Alexandria Engineering Journal, 2022, 61(1): 367-402.
[7] 邹雪梅, 曲云霞, 贾北平, 等. 太阳能供暖现状及分析[J]. 低温建筑技术, 2015, 37(3): 134-135.
[8] 唐泽. 太阳能干燥技术及其应用探究[D]. 北京: 北京化工大学, 2018.
[9] Liu M, Wang S, Li K. Study of the solar energy drying device and its application in traditional Chinese medicine in drying[J]. International Journal of Clinical Medicine, 2015, 6(4): 271.
[10] Shoeibi S, Kargarsharifabad H, Rahbar N, et al. An integrated solar desalination with evacuated tube heat pipe solar collector and new wind ventilator external condenser[J]. Sustainable Energy Technologies and Assessments, 2022, 50: 101857.
[11] 孙峰, 毕文剑, 周楷, 等. 太阳能热利用技术分析与前景展望[J]. 太阳能, 2021(7): 23-36.
[12] Kumar L, Hasanuzzaman M, Rahim N A. Global advancement of solar thermal energy technologies for industrial process heat and its future prospects: A review [J]. Energy Conversion and Management, 2019, 195: 885-908.
[13] 张欣军. 太阳能与地暖的联动供暖技术[J]. 中国电子商务, 2013, 10(19): 90.
[14] Bauer D, Marx R, Nußbicker-Lux J, et al. German central solar heating plants with seasonal heat storage[J]. Solar Energy, 2010, 84(4): 612-623.
[15] 国内外太阳能热水系统应用比较[J]. 给水排水, 2008(1): 67-72.
[16] 许威. 摩洛哥首个太阳能海水淡化项目启动[J]. 水处理技术, 2016, 42(2): 112.
[17] Granqvist C G. Solar energy materials[J]. Advanced Materials, 2003, 15(21): 1789-1803.
[18] 熊德华, 陈炜, 李宏. 太阳能光热转化选择性吸收涂层研究进展[J]. 科技导报, 2014, 32(9): 50-58.
[19] 曹宁宁, 卢松涛, 姚锐, 等. 太阳光谱选择性吸收涂层[J]. 化学进展, 2019, 31(4): 597-612.
[20] 袁静珍. 太阳能集热器的分类及特点分析[J]. 硅谷, 2013, 6(7): 178-179.
[21] 姚亮, 马俊贵, 吕全贵, 等. 太阳能集热器集热的研究现状及展望[J]. 农业工程, 2014, 4(5): 39-43.
[22] 朱冬生, 徐婷, 蒋翔, 等. 太阳能集热器研究进展[J]. 电源技术, 2012, 36(10): 1582-1584.
[23] 太阳界智库. 2020中国太阳能热利用行业运行状况报告[R]. 邢台: 中国农村能源行业协会太阳能热利用专委会, 中国节能协会太阳能专委会, 2020.
[24] 马非, 张鹏. 基于相变浆体的直接吸收式太阳能集热器研究[J]. 工程热物理学报, 2019, 40(8): 1852-1856.
[25] 徐国英, 陈伟, 张小松, 等. 纳米流体直接吸收式太阳能中温集热与热损分析[J]. 工程热物理学报, 2015, 36(5): 960-964.
[26] Choi S U S, Singer D A, Wang H P. Developments and applications of non-Newtonian flows[J]. Journal of Fluid Machinery, 1995, 66: 99-105.
[27] Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment[J]. Journal of Physical Chemistry B, 2003, 107(3): 668-677.
[28] Hogan N J, Urban A S, Ayala-Orozco C, et al. Nanoparticles heat through light localization[J]. Nano Letters, 2014, 14(8): 4640-4645.
[29] 李小东, 王成, 康前, 等. 纳米流体在直接吸收式太阳能集热器上的应用研究[J]. 工业加热, 2018, 47(3): 5- 7.
[30] 范满, 由世俊, 张欢, 等. V型多通道平板太阳能集热器的热性能研究[J]. 太阳能学报, 2022, 43(1): 478- 483.
[31] Kuczynski W, Kaminski K, Znaczko P, et al. On the correlation between the geometrical features and thermal efficiency of flat-plate solar collectors[J]. Energies, 2021, 14(2): 261.
[32] Jiang Y, Zhang H, You S, et al. Dynamic performance modeling and operation strategies for a v-corrugated flat-plate solar collector with movable cover plate[J]. Applied Thermal Engineering, 2021, 197: 117374.
[33] 王云峰, 常伟, 李明, 等. 直通式真空管空气集热器热性能实验及干燥应用[J]. 太阳能学报, 2020, 41(1): 21- 28.
[34] Gholipour S, Afrand M, Kalbasi R. Introducing two scenarios to enhance the vacuum U-tube solar collector efficiency by considering economic criterion[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 124: 228-237.
[35] Znaczko P, Szczepanski E, Kaminski K, et al. Experimental diagnosis of the heat pipe solar collector malfunction: A case study[J]. Energies, 2021, 14(11): 3050.
[36] Aref L, Fallahzadeh R, Shabanian S R, et al. A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector[J]. Energy, 2021, 230: 120751.
[37] Fan M, You S, Gao X, et al. A comparative study on the performance of liquid flat-plate solar collector with a new V-corrugated absorber[J]. Energy Conversion and Management, 2019, 184: 235-248.
[38] 张振兴, 孙金栋, 刘彦佐, 等. 微流道中空腔式太阳能集热器的集热性能研究[J]. 建筑科学, 2022, 38(4): 152-157.
[39] 马进伟, 李葱, 方浩, 等. 太阳能集热器空气/水双循环换热特性模拟研究[J]. 安徽建筑大学学报, 2022, 30(1): 40-45.
[40] Valleti K, Rao S G, Miryalkar P, et al. Cr-(CrN/TiAlN) m-AlSiN-AlSiO open-air stable solar selective coating for concentrated solar thermal power applications[J]. Solar Energy Materials and Solar Cells, 2020, 215: 110634.
[41] He C Y, Qiu X L, Yu D M, et al. Greatly enhanced solar absorption via high entropy ceramic AlCrTaTiZrN based solar selective absorber coatings[J]. Journal of Materiomics, 2021, 7(3): 460-469.
[42] 宗美林, 叶晓江, 常怀钟, 等. 水基碳纳米管纳米流体在室外自然条件下的光热性能研究[J]. 太阳能学报, 2020, 41(5): 48-53.
[43] Sattar A, Farooq M, Amjad M, et al. Performance evaluation of a direct absorption collector for solar thermal energy conversion[J]. Energies, 2020, 13(18): 4956.
[44] Nazari M, Jafarmadar S, Khalilarya S. Exergy and thermoeconomic analyses of serpentine tube flat-plate solar water heaters coated with CuO nanostructures[J]. Case Studies in Thermal Engineering, 2022, 35: 102072.
[45] 高甲东, 赵长颖, 叶强. 基于粒子散射的太阳光谱选择性吸收涂层[J]. 太阳能学报, 2019, 40(4): 921-927.
[46] Alawi O A, Kamar H M, Mallah A R, et al. Graphene nanoplatelets suspended in different basefluids based solar collector: An experimental and analytical study[J]. Processes, 2021, 9(2): 302.
[47] Lee M, Shin Y, Cho H. Performance evaluation of flat plate and vacuum tube solar collectors by applying a MWCNT/Fe3O4 binary nanofluid[J]. Energies, 2020, 13(7): 1715.
[48] Saleh B, Sundar L S. Thermal efficiency, heat transfer, and friction factor analyses of MWCNT+Fe3O4/water hybrid nanofluids in a solar flat plate collector under thermosyphon condition[J]. Processes, 2021, 9(1): 180.
[49] 陈宇飞, 兰亚鹏, 古龙, 等. 太阳能选择性吸收涂层的研究进展与应用前景[J]. 热加工工艺, 2022, 51(4): 8- 14.
[50] 王亚辉, 罗延旭, 刘耀, 等. 纳米流体研究进展[J]. 能源工程, 2022, 42(2): 7-16.
[51] Dutkowski K, Kruzel M, Bohdal T. Experimental studies of the influence of microencapsulated phase change material on thermal parameters of a flat liquid solar collector[J]. Energies, 2021, 14(16): 5135.
[52] Ramirez C, Palacio M, Carmona M. Reduced model and comparative analysis of the thermal performance of indirect solar dryer with and without PCM[J]. Energies, 2020, 13(20): 5508.
[53] 薛花. 相变储能型太阳能真空集热管内相变传热研究[D]. 南京: 东南大学, 2015.
[54] 夏曼, 王晓宇, 吴薇, 等. 内插热管式太阳能集热器内相变材料的蓄热/释热特性研究[J]. 南京师范大学学报(工程技术版), 2020, 20(3): 1-8.
[55] Papadimitratos A, Sobhansarbandi S, Pozdin V, et al. Evacuated tube solar collectors integrated with phase change materials[J]. Solar Energy, 2016, 129: 10-19.
[56] 徐侃, 徐新华, 严天. 太阳能集热器-内嵌管式相变顶板房间能效模拟分析[J]. 建筑科学, 2022, 38(2): 187- 194.
[57] 冯国会, 王刚, 李奇岩. 模块化电磁能耦合相变蓄能水箱辅助太阳能供暖系统分析[J]. 暖通空调, 2021, 51(Suppl 1): 6-10.
[58] 刘晓燕, 孙睿忆, 赵海谦, 等. 严寒地区单体建筑太阳能 -相变墙系统蓄热特性研究[J]. 热科学与技术, 2020, 19(5): 436-443.
[59] 刘迟, 李保国, 罗权权, 等. 蓄能型空气式太阳能集热器的实验研究与分析[J]. 农业装备与车辆工程, 2022, 60(5): 64-68, 73.
[60] 邱庆龄. 纳米TiO2改性复合相变微胶囊的制备及热性能研究[J]. 功能材料, 2020, 51(10): 10216-10220.
[61] Ma F, Zhang P. Performance investigation of the direct absorption solar collector based on phase change slurry [J]. Applied Thermal Engineering, 2019, 162: 114244.
[62] 吕园园. 新型太阳能集热器性能分析与研究[D]. 长沙: 中南大学, 2013.
[63] 张晓晖. CPC脉动热管太阳能集热器设计与运行特性研究[D]. 北京: 北京建筑大学, 2017.
[64] Bellos E, Tzivanidis C. Polynomial expressions for the thermal efficiency of the parabolic trough solar collector [J]. Applied Sciences, 2020, 10(19): 6901.
[65] Zaboli M, Ajarostaghi S S M, Saedodin S, et al. Thermal performance enhancement using absorber tube with inner helical axial fins in a parabolic trough solar collector [J]. Applied Sciences, 2021, 11(16): 7423.
[66] Malali P D, Chaturvedi S K, Agarwala R. Effects of circumsolar radiation on the optimal performance of a Stirling heat engine coupled with a parabolic dish solar collector[J]. Applied Thermal Engineering, 2019, 159: 113961.
[67] Yan J, Peng Y D, Wang H. Assessing the impact of nonideal optical factors on optimized solar dish collector system with mirror rearrangement[J]. International Journal of Energy Research, 2020, 44(11): 8799-8822.
[68] Suman S, Khan M K, Pathak M. Performance enhancement of solar collectors—A review[J]. Renewable and Sustainable Energy Reviews, 2015, 49: 192-210.
[69] Winston R. Principles of solar concentrators of a novel design[J]. Solar Energy, 1974, 16(2): 89-95.
[70] 徐海洋, 季旭, 王六玲, 等. 安装角度对复合抛物面聚光集热器接收太阳辐射影响的数值模拟[J]. 太阳能学报, 2021, 42(6): 170-176.
[71] Riaz H, Ali M, Akhtar J, et al. Comparative optical and thermal analysis of compound parabolic solar collector with fixed and variable concentration ratio[J]. Engineering Proceedings, 2022, 12(1): 85.
[72] 王雪勍, 徐荣吉, 王岸, 等. CPC微通道太阳能集热器运行特性实验系统设计[J]. 实验室研究与探索, 2021, 40(9): 66-70.
[73] Xu R, Ma Y, Yan M, et al. Effects of deformation of cylindrical compound parabolic concentrator (CPC) on concentration characteristics[J]. Solar Energy, 2018, 176: 73-86.
[74] 邹斌. 抛物面槽式太阳能集热器聚光传热机理及热性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
[75] 郭彪. 抛物面槽式太阳能集热器热性能分析与预测技术研究[D]. 石家庄: 石家庄铁道大学, 2021.
[76] 林仲祺. 聚光型太阳能空气集热器的性能研究[D]. 广州: 广东工业大学, 2020.
[77] Subramaniyan C, Subramani J, Kalidasan B, et al. Investigation on the optical design and performance of a single-axis-tracking solar parabolic trough collector with a secondary reflector[J]. Sustainability, 2021, 13(17): 9918.
[78] 罗玉浩, 吴国栋, 唐奕凡, 等. 内冷蒸发腔式太阳能集热器的设计与实验分析[J]. 发电技术, 2021, 42(6): 715-726.
[79] 林仲祺, 谢嘉豪, 龙碧莹, 等. 聚光型太阳能空气集热器 的发 展及 展望 [J]. 绿色 科技 , 2020(10): 217-218, 223.
[80] Maraj A, Londo A, Firat C, et al. Comparison of the energy performance between flat-plate and heat pipe evacuated tube collectors for solar water heating systems under mediterranean climate conditions[J]. Journal of Sustainable Development of Energy, Water and Environment Systems, 2019, 7(1): 87-100.
[81] 满学鹏, 顾炜莉, 易小芳, 等. 热管真空管太阳能集热器研究进展及应用[J]. 真空科学与技术学报, 2021, 41(4): 318-325.
[82] 朱传辉, 李保国. 相变蓄热材料应用于太阳能采暖的研究现状[J]. 中国材料进展, 2017, 36(3): 236-240.
Outlines

/