Reviews

55 years after pulsar discovery: Future of FAST telescope

  • ZHANG Chengmin ,
  • CUI Xianghan ,
  • WANG Dehua ,
  • YANG Yiyan ,
  • ZHANG Jianwei ,
  • YU Jing ,
  • SUN Yihong ,
  • WANG Shuangqiang ,
  • WU Qingdong ,
  • PAN Yuanyue ,
  • ZHOU Shiqi ,
  • YE Changqing
Expand
  • 1. National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
    2. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. CAS Key Laboratory of FAST, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
    4. School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China;
    5. School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China;
    6. Xinjiang Observatories, CAS, Urumqi 830011, China;
    7. Key Laboratory of Stars and Interstellar Medium, Xiangtan University, Xiangtan 411105, China;
    8. School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China

Received date: 2022-01-02

  Revised date: 2022-07-01

  Online published: 2023-01-11

Abstract

Pulsars discovery is one of the important milestones in human understanding of the universe. In this paper, we briefly introduce the pulsar research of recent 55 years, including the verification of gravitational waves and general relativity, the findings of millisecond pulsars, pulsar periodic jumps, pulsar radio radiation efficiency, fast radio bursts and extragalactic pulsars. we look forward to the potential of the Chinese FAST telescope for the discovery of new types of special pulsars in the future, including black hole pulsar, sub-millisecond pulsar, and new double pulsar systems, which will lead to more accurate validation of gravitational wave experiments; the fine structure of pulsar radiation is also studied by FAST with high sensitivity and high precision, and the physical mechanism of pulsar radiation will be deeply understood.

Cite this article

ZHANG Chengmin , CUI Xianghan , WANG Dehua , YANG Yiyan , ZHANG Jianwei , YU Jing , SUN Yihong , WANG Shuangqiang , WU Qingdong , PAN Yuanyue , ZHOU Shiqi , YE Changqing . 55 years after pulsar discovery: Future of FAST telescope[J]. Science & Technology Review, 2022 , 40(24) : 72 -77 . DOI: 10.3981/j.issn.1000-7857.2022.24.008

References

[1] Hewish A, Bell S J, Pilkington J D H, et al. Observation of a rapidly pulsating radio source[J]. Nature, 1968, 217(5130): 709-713.
[2] 习近平会见国际天文学联合会主席罗伯特·威廉姆斯等与 会嘉 宾[EB/OL]. (2012-08-21) [2022-05-19]. http://politics.people.com.cn/n/2012/0822/c1024-18805171-3.html.
[3] Manchester R N, Hobbs T A, Hobbs M. The Australia telescope national facility pulsar catalogue[J]. Astronomical Journal, 2005, 129(4): 1993-2006.
[4] Pan Z C, Ransom S M, Lorimer D R, et al. The FAST discovery of an eclipsing binary millisecond pulsar in the globular cluster M92(NGC 6341) [J]. The Astrophysical Journal, 2020, 892(1): L6-L10.
[5] Miller M C. Astrophysical constraints on dense matter in neutron stars[M]//Timing Neutron Stars: Pulsations, Oscillations and Explosions. Berlin: Springer Berlin Heidelberg, 2021: 1-51.
[6] Abbott B P, Abbott R, Abbott T D, et al. Search for gravitational waves from a long-lived remnant of the binary neutron star merger GW170817[J]. The Astrophysical Journal, 2019, 875(2): 160-179.
[7] Li D, Pan Z. The Five-hundred-meter Aperture Spherical radio Telescope project[J]. Radio Science, 2016, 51(7): 1060-1064.
[8] Jiang P, Yao R. The latest progress of Five-hundred-meter Aperture Spherical radio Telescope[J]. Science China Science China(Technological Sciences), 2022, 65(4): 987- 988.
[9] 张承民, 崔翔翰, 杨佚沿, 等. 从阿雷西博到中国天眼射电望远镜: 工业革命的接力[J]. 科技导报, 2021, 39(11): 9-15.
[10] 南仁东. 500 m球反射面射电望远镜FAST[J]. 中国科学: G辑, 2005, 35(5): 3-20.
[11] Peng B, Nan R D, Su Y, et al. Five-hundred-meter Aperture Spherical Telescope project[J]. Astrophysics and Space Science, 2001, 278(1): 219-224.
[12] Hulse R A, Taylor J H. Discovery of a pulsar in a binary system[J]. Astrophysical Journal, 1975, 195(15): L51- L53.
[13] Lorimer D R, Kramer M. Handbook of pulsar astronomy [M]. Cambridge: Cambridge University Press, 2012.
[14] Backer D C, Kulkarni S R, Heiles C, et al. A millisecond pulsar[J]. Nature, 1982, 300(5893): 615-618.
[15] Zhang C M, Kojima Y. The bottom magnetic field and magnetosphere evolution of neutron star in low-mass Xray binary[J]. Monthly Notices of the Royal Astronomical Society, 2006, 366(1): 137-143.
[16] Faucher-Giguere C A, Kaspi V M. Birth and evolution of isolated radio pulsars[J]. The Astrophysical Journal, 2006, 643(1): 332-355.
[17] Igoshev A P, Popov S B, Hollerbach R. Evolution of neutron star magnetic fields[J]. Universe, 2021, 7(9): 351.
[18] Radhakrishnan V, Manchester R N. Detection of a change of state in the pulsar PSR 0833-45[J]. Nature, 1969, 222(5190): 228-229.
[19] Haskell B, Melatos A. Models of pulsar glitches[J]. International Journal of Modern Physics D, 2015, 24(3): 1530008.
[20] Wu Q D, Zhi Q J, Zhang C M, et al. Luminosity of a radio pulsar and its new emission death line[J]. Research in Astronomy and Astrophysics, 2020, 20(11): 159-166.
[21] Malov I, Malov O. Integrated radio luminosities of pulsars[J]. Astronomy Reports, 2006, 50(6): 483-495.
[22] Szary A, Zhang B, Melikidze G I, et al. Radio efficiency of pulsars[J]. The Astrophysical Journal, 2014, 784(1): 59-68.
[23] Lorimer D R, Bailes M, McLaughlin M A, et al. A bright millisecond radio burst of extragalactic origin[J]. Science, 2007, 318(5851): 777-780.
[24] Spitler L, Scholz P, Hessels J, et al. A repeating fast radio burst[J]. Nature, 2016, 531(7593): 202-205.
[25] Xiao D, Wang F Y, Dai Z G. The physics of fast radio bursts[J]. Science China Physics, Mechanics & Astronomy, 2021, 64(4): 39-70.
[26] Bochenek C D, Ravi V, Belov K V, et al. A fast radio burst associated with a Galactic magnetar[J]. Nature, 2020, 587(7832): 59-62.
[27] Li C K, Lin L, Xiong S L, et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J]. Nature Astronomy, 2021, 5(4): 378-384.
[28] Lin L, Zhang C F, Wang P, et al. No pulsed radio emission during a bursting phase of a Galactic magnetar[J]. Nature, 2020, 587(7832): 63-65.
[29] Feng Y, Li D, Yang Y P, et al. Frequency-dependent polarization of repeating fast radio bursts—implications for their origin[J]. Science, 2022, 375(6586): 1266-1270.
[30] Li D, Wang P, Zhu W W, et al. A bimodal burst energy distribution of a repeating fast radio burst source[J]. Nature, 2021, 598(7880): 267-271.
[31] Cui X H, Zhang C M, Wang S Q, et al. Fast radio bursts: Do repeaters and non-repeaters originate in statistically similar ensembles[J]. Monthly Notices of the Royal Astronomical Society, 2021, 500(3): 3275-3280.
[32] Huang Y F, Yu Y B. Searching for strange quark matter objects in exoplanets[J]. The Astrophysical Journal, 2017, 848(2), 115.
[33] Kuerban A, Geng J J, Huang Y F, et al. Close-in exoplanets as candidates for strange quark matter objects [J]. The Astrophysical Journal, 2020, 890(1): 41-52.
[34] Stairs I H, Thorsett S E, Arzoumanian Z. Measurement of gravitational spin-orbit coupling in a binary pulsar system[J]. Physical Review Letters, 2004, 93(14): 141101.
[35] van Leeuwen J, Kasian L, Stairs I H, et al. The binary companion of young, relativistic pulsar J1906+0746[J]. The Astrophysical Journal, 2015, 798(2): 118.
[36] Liu Q Z, van Paradijs J, van den Heuvel E P J. Catalogue of high-mass X-ray binaries in the Galaxy (4th edition) [J]. Astronomy & Astrophysics, 2006, 455(3): 1165-1168.
[37] Liu Q Z, van Paradijs J, van den Heuvel E P J. A catalogue of low-mass X-ray binaries in the Galaxy, LMC, and SMC (fourth edition)[J]. Astronomy & Astrophysics, 2007, 469(2): 807-810.
Outlines

/