Papers

Research on topological characteristics of special equipment safety accidents time series

  • JIN Lianghai ,
  • XIA Lu ,
  • CHEN Shu ,
  • SHAO Bo ,
  • LIU Jia ,
  • FAN Ling ,
  • YAN Yuerong
Expand
  • 1. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China;
    2. Safety Production Standardization Review Center of China Three Gorges University, Yichang 443002, China;
    3. Hubei Anhuan Technology Co., Ltd., Yichang 443002, China

Received date: 2022-04-24

  Revised date: 2022-09-20

  Online published: 2023-01-11

Abstract

In order to reveal the nonlinear dynamic characteristics of the time series of special equipment safety accidents, taking the time series of different types of special equipment safety accidents in China from 2005 to 2020 as the research object, the visualization method was used to convert the time series of special equipment safety accidents into a topology network diagram to generate a topology network structural model; using topological network theory to analyze topological network characteristic parameters such as node degree, network density, weighted clustering coefficient, power law index, betweenness centrality, etc., the time series law of special equipment accidents was mined. The results show that: The topological networks of various special equipment safety accident time series have small-world characteristics and scale-free characteristics; the clustering coefficients of the topological networks are all large, and the community structure is obvious; the node with greater betweenness centrality corresponds to the corresponding year, the greater the probability of an accident. The topology network analysis method used in this paper can more concisely and intuitively display the topology network structure of the time series of special equipment safety accidents, and more comprehensively characterize the nonlinear dynamic characteristics of the time series of special equipment safety accidents, which can provide a theoretical basis for the prediction of special equipment safety accidents.

Cite this article

JIN Lianghai , XIA Lu , CHEN Shu , SHAO Bo , LIU Jia , FAN Ling , YAN Yuerong . Research on topological characteristics of special equipment safety accidents time series[J]. Science & Technology Review, 2022 , 40(24) : 78 -84 . DOI: 10.3981/j.issn.1000-7857.2022.24.009

References

[1] 董颖, 罗云, 许铭, 等. 8类特种设备危险点(源)风险强度定量分析[J]. 安全与环境学报, 2013, 13(6): 218-221.
[2] 曾珠, 罗云, 杨燕鹏, 等. 特种设备社会风险水平定量分析[J]. 中国安全科学学报, 2014, 24(8): 119-124.
[3] 孙轶轩, 邵春福, 计寻, 等. 基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版), 2014, 54(3): 348-353.
[4] 曾珠, 罗云, 杨燕鹏, 等. 适于监管的特种设备使用过程关键风险因素辨识分析[J]. 中国安全科学学报, 2014, 24(2): 157-163.
[5] 张倩倩, 张亦冰, 丁日佳. 基于监管视角的区域特种设备宏观安全风险预警[J]. 安全与环境学报, 2020, 20(2): 397-405.
[6] 王新浩, 罗云, 李桐, 等. 基于大数据的特种设备宏观安全风险预警方法研究[J]. 中国安全生产科学技术, 2018, 14(4): 160-166.
[7] Liang Z, Zhou K, Gao R, et al. Special equipment safety supervision system architecture based on blockchain technology[J]. Applied Sciences-Basel, 2020, 10(20): 601- 625.
[8] 郝素利. 特种设备安全监管新模式: 多中心治理[J]. 中国科技论坛, 2018(7): 9-17.
[9] Wang F, Zhang J, Liang X, et al. Elevator safety risk and countermeasures based on FTA-TFN[J]. Applied Mathematics & Information Sciences, 2014, 8(4): 1741-1748.
[10] 杨强, 孙志礼, 赵鑫, 等. 可测量潜在故障模式的特种设备可靠寿命预测[J]. 东北大学学报(自然科学版), 2014, 35(1): 88-92.
[11] 郑霞忠, 周佳丽, 邵波, 等. 基于D-I的塔机作业物体打击事故致因分析[J]. 中国安全科学学报, 2021, 31(6): 83-89.
[12] Ding K, Tao G, Zhang L. Accident prediction of special equipment in china based on grey markov Model[J]. IOP Conference Series: Earth and Environmental Science, 2019, 242(3): 32007.
[13] 崔庆玲, 罗云, 崔刚, 等. 基于灰色理论的特种设备安全事故预测研究[J]. 中国安全生产科学技术, 2013, 9(5): 141-144.
[14] 谷梦瑶, 李光海, 戴之希. 融合事故表征和CBR的特种设备事故预测研究[J]. 计算机工程与应用, 2022, 58(1): 255-267.
[15] Wenjun X, Yanxia L, Guanrong C. Characterizing vertex-degree sequences in scale-free networks[J]. Physica A: Statistical Mechanics and its Applications, 2014, doi: 10.1016/j.physa.2014.02.036.
[16] Lacasa L, Luque B, Ballesteros F, et al. From time series to complex networks: The visibility graph[J]. PNAS, 2008, 105(13): 4972-4975.
[17] Pierini J O, Lovallo M, Telesca L. Visibility graph analysis of wind speed records measured in central Argentina [J]. Physica A: Statistical Mechanics and its Applications, 2012, 391(20): 5041-5048.
[18] 王超, 朱明. 基于复杂网络表征ATF时间序列动力学特性[J]. 计算机仿真, 2018, 35(6): 81-85.
[19] 邢雪, 于德新, 田秀娟, 等. 结合可视图的多状态交通流时间序列特性分析[J]. 物理学报, 2017, 66(23): 57- 65.
[20] 曾明, 王二红, 赵明愿, 等. 基于时间序列符号化模式表征的有向加权复杂网络[J]. 物理学报, 2017, 66(21): 292-302.
[21] Freeman L C. A set of measures of centrality based on betweenness[J]. Sociometry, 1977, 40(1): 35-41.
[22] 邹勇, Donner Reik V, Marwan Norbert, 等. 非线性时间序列的复杂网络分析[J]. 中国科学: 物理学力学天文学, 2020, 50(1): 133-147.
[23] Yang Y, Wang J, Yang H, et al. Visibility graph approach to exchange rate series[J]. Physica A: Statistical Mechanics and its Applications, 2009, 388(20): 4431- 4437.
Outlines

/