[1] Müller R, Abaid N, Boreyko J B, et al.Biodiversifying bioinspiration[J].Bioinspiration & Biomimetics, 2018, 13(5):053001.
[2] Ajanic E, Feroskhan M, Mintchev S, et al.Bioinspired wing and tail morphing extends drone flight capabilities[J].Science Robotics, 2020, 5(47):eabc2897.
[3] Huang J G, Gong X, Wang Z Y, et al.The kinematics analysis of webbed feet during cormorants' swimming[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO).New York:ACM, 2016:301-306.
[4] Huang J G, Li J Y, Chen H Y, et al.Design and CFD based simulation analysis of a biotic webbed feet propulsion mechanism for hydroplaning[C]//2018 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2018:83-87.
[5] Pengelley R.All hands on deck:The sky's the limit for shipboard UAVs[N].Navy International, 2009, 12:12-17.
[6] Macy D, Eubank R, Atkins E, et al.Flying fish:A persistent ocean surveillance buoy with autonomous aerial repositioning[C]//AUVSI Conference 2009.Reston:AIAA, 2011:AIAA 2009-1902.
[7] Eubank R, Atkins E.Unattended autonomous mission and system management of an unmanned seaplane[C]//Infotech@Aerospace Conferences 2011.Reston:AIAA, 2011:AIAA 2011-1614.
[8] Eubank R D.Autonomous flight, fault, and energy management of the flying fish solar-powered seaplane[D].Michigan:University of Michigan, 2012.
[9] Eubank R D, Bradley J M, Atkins E M.Energy-aware multiflight planning for an unattended seaplane:Flying fish[J].Journal of Aerospace Information Systems, 2017, 14(2):73-91.
[10] 刘华欣.仿生跨介质航行器机理研究及原型机工程[D].北京:北京航空航天大学, 2009.
[11] Gao A, Techet A H.Design considerations for a robotic flying fish[C]//OCEANS'11 MTS/IEEE KONA.Piscataway:IEEE, 2011:1-8.
[12] Desbiens A L, Pope M T, Christensen D L, et al.Design principles for efficient, repeated jumpgliding[J].Bioinspiration & Biomimetics, 2014, 9(2):025009.
[13] Desbiens A L, Pope M, Berg F, et al.Efficient jumpgliding:Theory and design considerations[C]//2013 IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2013:4451-4458.
[14] Marks P.Robot takes to the air on the wings of a fish[J].New Scientist, 2013(2916):22.
[15] Mathaiyan V, Vijayanandh R, Vijayanandh R, et al.Conceptual design and numerical analysis of an unmanned amphibious vehicle[C]//AIAA Scitech 2021 Forum.Restona:AIAA, 2021:AIAA 2021-1285.
[16] Lock R J, Vaidyanathan R, Burgess S C.Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles[C]//2010 IEEE/RSJ International Confer-ence on Intelligent Robots and Systems.Piscataway:IEEE, 2010:3404-3409.
[17] Lock R J.A biologically-inspired multi-modal wing for aerial-aquatic robotic vehicles[D].Bristol:University of Bristol, 2011
[18] Lock R J, Vaidyanathan R, Burgess S C.Design and experimental verification of a biologically inspired multimodal wing for aerial-aquatic robotic vehicles[C]//20124th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).Pis-cataway:IEEE, 2012:681-687.
[19] Lock R J, Vaidyanathan R, Burgess S C.Impact of marine locomotion constraints on a bioinspired aerialaquatic wing:Experimental performance verification[J].Journal of Mechanisms and Robotics, 2014, 6(1):011001.
[20] Izraelevitz J S, Triantafyllou M S.A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2015:5830-5837.
[21] Ramamurti R, Geder J D, Edwards D, et al.Computational studies for the development of a hybrid UAV/UUV[C]//33rd AIAA Applied Aerodynamics Conference.Reston:AIAA, 2015:2414.
[22] Stewart W, Weisler W, Macleod M, et al.Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system[J].Bioinspiration & Biomimetics, 2018, 13(5):056013.
[23] Fabian A, Feng Y, Swartz E, et al.Hybrid aerial underwater vehicle[R].Cambridge:Mit Lincoln Lab, 2012.
[24] Yang X B, Wang T M, Liang J H, et al.Numerical analysis of biomimetic gannet impacting with water during plunge-diving[C]//2012 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2012:569-574.
[25] Wang T M, Yang X B, Liang J H, et al.CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving[J].Bioinspiration & Biomimetics, 2013, 8(3):036006.
[26] Yang X, Liang J, Li Y, et al.Modeling and analysis of variable buoyancy device imitating waterfowl plumage structure[C]//The Twenty-first International Offshore and Polar Engineering Conference., in The Twenty-first International Offffshore and Polar Engineering Con-ference.Maui:ISOPE, 2011:ISOPE-I-11-199.
[27] Liang J H, Yang X B, Wang T M, et al.Design and experiment of a bionic gannet for plunge-diving[J].Journal of Bionic Engineering, 2013, 10(3):282-291.
[28] Liang J H, Yao G C, Wang T M, et al.Wing load investigation of the plungediving locomotion of a gannet Morus inspired submersible aircraft[J].Science China Technological Sciences, 2014, 57(2):390-402.
[29] Yang X B, Wang T M, Liang J H, et al.Submersible unmanned aerial vehicle concept design study[C]//2013 Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2013:4422.
[30] Yang X B, Liang J H, Wang T M, et al.Computational simulation of a submersible unmanned aerial vehicle impacting with water[C]//2013 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2013:1138-1143.
[31] Siddall R, Kovac M.Fast aquatic escape with a jet thruster[J].IEEE/ASME Transactions on Mechatronics, 2017, 22(1):217-226.
[32] Siddall R, Ortega Ancel A, Kovač M.Wind and water tunnel testing of a morphing aquatic micro air vehicle[J].Interface Focus, 2017, 7(1):20160085.
[33] Armanini S F, Siddall R, Kovac M.Modelling and simulation of a bioinspired aquatic micro aerial vehicle[C]//AIAA Aviation 2019 Forum.Reston:AIAA, 2019:3115.
[34] Guo D, Bacciaglia A, Simpson M, et al.Design and development a bimodal unmanned system[C]//AIAA Scitech 2019 Forum.Reston:AIAA, 2019:2096.
[35] Pena I, Billingsley E, Zimmerman S, et al.Comprehensive sizing process, actuation mechanism selection, and development of gannet-inspired amphibious drones[C]//AIAA Aviation 2020 Forum.Reston:AIAA, 2020:2764.
[36] Siddall R, Kovač M.A water jet thruster for an aquatic micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2015:3979-3985.
[37] Zufferey R, Ancel A O, Farinha A, et al.Consecutive aquatic jump-gliding with water-reactive fuel[J].Science Robotics, 2019, 4(34):eaax7330.
[38] Hou T G, Yang X B, Su H H, et al.Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms[C]//2019 International Conference on Robotics and Automation (ICRA).Piscataway:IEEE, 2019:4681-4687.
[39] Hou T G, Yang X B, Su H H, et al.Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology tradeoff[C]//2019 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2019:1020-1026.
[40] Chen Y F, Helbling E F, Gravish N, et al.Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway:IEEE, 2015:331-338.
[41] Chen Y F, Wang H Q, Helbling E F, et al.A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J].Science Robotics, 2017, 2(11):eaao5619.
[42] Shealer D A.Foraging behaviour and food of seabirds[M]//Schreiber E A, Burger J.Biology of marine birds.Boca Raton:CRC Press, 2002:13-178.
[43] Laschi C, Cianchetti M.Soft robotics:New perspectives for robot bodyware and control[J].Frontiers in Bioengineering and Biotechnology, 2014, 2:3.
[44] Cheng N G, Lobovsky M B, Keating S J, et al.Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media[C]//2012 IEEE In-ternational Conference on Robotics and Automation.Piscataway:IEEE, 2012:4328-4333.
[45] 王超.线驱动硅胶软体机械臂建模与控制[D].上海:上海交通大学, 2015.
[46] Kim S, Laschi C, Trimmer B.Soft robotics:A bioinspired evolution in robotics[J].Trends in Biotechnology, 2013, 31(5):287-294.
[47] Kim J S, Lee J Y, Lee K T, et al.Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite[J].Journal of Mechanical Science and Technology, 2013, 27(10):3123-3129.
[48] Jin H, Dong E B, Mao S X, et al.Locomotion modeling of an actinomorphic soft robot actuated by SMA springs[C]//2014 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2014:21-26.
[49] Nakabo Y, Mukai T, Asaka K.Biomimetic soft robots using IPMC[M]//Electroactive Polymers for Robotic Applications.London:Springer London, 2007:165-198.
[50] Stoimenov B L, Rossiter J, Mukai T.Soft ionic polymer metal composite (IPMC) robot swimming in viscous fluid[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.Proc SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) 2009.San Diego:SPIE, 2009, 7287:757-764.
[51] Kempaiah R, Nie Z H.From nature to synthetic systems:Shape transformation in soft materials[J].Journal of Materials Chemistry B, 2014, 2(17):2357-2368.
[52] Cianchetti M, Calisti M, Margheri L, et al.Bioinspired locomotion and grasping in water:The soft eight-arm OCTOPUS robot[J].Bioinspiration & Biomimetics, 2015, 10(3):035003.
[53] Rus D, Tolley M T.Design, fabrication and control of soft robots[J].Nature, 2015, 521(7553):467-475.
[54] Roche E T, Horvath M A, Wamala I, et al.Soft robotic sleeve supports heart function[J].Science Translational Medicine, 2017, 9(373):eaaf3925.
[55] Tang W, Zhang C, Zhong Y D, et al.Customizing a selfhealing soft pump for robot[J].Nature Communications, 2021, 12(1):2247.
[56] Tolley M T, Shepherd R F, Karpelson M, et al.An untethered jumping soft robot[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway:IEEE, 2014:561-566.
[57] Li G R, Chen X P, Zhou F H, et al.Self-powered soft robot in the Mariana Trench[J].Nature, 2021, 591(7848):66-71.
[58] Calisti M, Picardi G, Laschi C.Fundamentals of soft robot locomotion[J].Journal of the Royal Society, Interface, 2017, 14(130):20170101.
[59] Hou T G, Yang X B, Aiyama Y, et al.Design and experiment of a universal two-fingered hand with soft fingertips based on jamming effect[J].Mechanism and Machine Theory, 2019, 133:706-719.
[60] Li D C, Zhao S W, da Ronch A, et al.A review of modelling and analysis of morphing wings[J].Progress in Aerospace Sciences, 2018, 100:46-62.
[61] Shepherd R F, Stokes A A, Freake J, et al.Using explosions to power a soft robot[J].Angewandte Chemie International Edition, 2013, 52(10):2892-2896.
[62] Whitmore S A, Merkley D P.Arcignition of a 70%-85% hydrogen peroxide/ABS hybrid rocket system[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston:AIAA, 2017:5047.
[63] Chen Y T, Zhou J Y.The auto-ignition of kerosenebased synthetic fuel/hydrogen peroxide propellants and its injector design[C]//2018 Joint Propulsion Conference.Reston:AIAA, 2018:4775.
[64] Schneider S J.Hydrogen peroxide-water-ethanol monopropellant blend for CubeSat propulsion[C]//AIAA Propulsion and Energy 2020 Forum.Reston:AIAA, 2020:3809.
[65] Kolsgaard A.Hydrogen peroxide based reaction control system[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston:AIAA, 2017:4925.
[66] Siddall R, Kennedy G, Kovac M.High-power propulsion strategies for aquatic take-off in robotics[M]//Springer Proceedings in Advanced Robotics.Cham:Springer International Publishing, 2017:5-20.
[67] Roddy M, Hodges H, Roe L, et al.Solid state gas generator for small satellite deorbiter[C]//2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems.Piscataway:IEEE, 2017:644-649.
[68] Roddy M A, Huang P H A.A solid-state gas generator actuated deorbiter for CubeSats[J].Journal of Microelectromechanical Systems, 2019, 28(6):1068-1079.
[69] Norton A A, Minor M A.Pneumatic microactuator powered by the deflagration of sodium azide[J].Journal of Microelectromechanical Systems, 2006, 15(2):344-354.
[70] Tan Y H, Siddall R, Kovac M.Efficient aerial-aquatic locomotion with a single propulsion system[J].IEEE Robotics and Automation Letters, 2017, 2(3):1304-1311.
[71] Lu D, Xiong C K, Zhou H X, et al.Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle[J].Ocean Engineering, 2021, 219:108324.
[72] Huang J G, Liang J H, Wang T M, et al.Numerical analysis of the body, webbed-feet, and wings during cormorant's take off[C]//2018 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2018:94-99.
[73] Deng J, Zhang L X, Liu Z Y, et al.Numerical prediction of aerodynamic performance for a flying fish during gliding flight[J].Bioinspiration & Biomimetics, 2019, 14(4):046009.
[74] Hou T G, Yang X B, Wang T M, et al.Locomotor transition:how squid jet from water to air[J].Bioinspiration & Biomimetics, 2020, 15(3):036014.
[75] Huang J G, Sun Y L, Wang T M, et al.Fluid-structure interaction hydrodynamics analysis on a deformed bionic flipper with nonuniformly distributed stiffness[J].IEEE Robotics and Au-tomation Letters, 2020, 5(3):4657-4662.
[76] Huang J G, Wang T M, Lueth T C, et al.CFD based investigation on the hydroplaning mechanism of a cormorant's webbed foot propulsion[J].IEEE Access, 2022, 8:31551-31561.
[77] Sharker S I, Holekamp S, Mansoor M M, et al.Water entry impact dynamics of diving birds[J].Bioinspiration & Biomimetics, 2019, 14(5):056013.
[78] Zhao D, Song S F, Su J L, et al.Learning bionic motions by imitating animals[C]//2020 IEEE International Conference on Mechatronics and Automation.Piscataway:IEEE, 2020:872-879.
[79] Park H, Choi H.Aerodynamic characteristics of flying fish in gliding flight[J].The Journal of Experimental Biology, 2010, 213(Pt 19):3269-3279.
[80] Chang E, Matloff L Y, Stowers A K, et al.Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion[J].Science Robotics, 2020, 5(38):eaay1246.
[81] Di Luca M, Mintchev S, Su Y X, et al.A bioinspired Separated Flow wing provides turbu-lence resilience and aerodynamic efficiency for miniature drones[J].Science Robotics, 2020, 5(38):eaay8533.
[82] Hedenström A, Johansson L C, Wolf M, et al.Bat flight generates complex aerodynamic tracks[J].Science, 2007, 316(5826):894-897.
[83] Young J, Walker S M, Bomphrey R J, et al.Details of insect wing design and deformation enhance aerodynamic function and flight efficiency[J].Science, 2009, 325(5947):1549-1552.
[84] Wen L, Wang T M, Wu G H, et al.Quantitative thrust efficiency of a self-propulsive robotic fish:Experimental method and hydrodynamic investigation[J].IEEE/ASME Transactions on Mechatronics, 2013, 18(3):1027-1038.
[85] Anderson E J, Grosenbaugh M A.Jet flow in steadily swimming adult squid[J].The Journal of Experimental Biology, 2005, 208(Pt 6):1125-1146.
[86] Bartol I K, Krueger P S, Stewart W J, et al.Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis:Evidence of multiple jet ‘modes’ and their implications for propulsive efficiency[J].The Journal of Experimental Biology, 2009, 212(Pt 12):1889-1903.
[87] Bartol I K, Krueger P S, Jastrebsky R A, et al.Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first[J].The Journal of Experimental Biology, 2016, 219(Pt 3):392-403.
[88] Guo X Y, Li W B, Zhang W M.Adjustable stiffness elastic composite soft actuator for fast-moving robots[J].Science China Technological Sciences, 2021, 64(8):1663-1675.
[89] Rus D, Tolley M T.Design, fabrication and control of origami robots[J].Nature Reviews Materials, 2018, 3(6):101-112.
[90] Yang X B, Pei X.Hybrid system for powering unmanned aerial vehicles:demonstration and study cases[M]//Hybrid Technologies for Power Generation.Amsterdam:Elsevier, 2022:439-473.
[91] Wei X Y, Xiong J, Wang J, et al.New advances in fiberreinforced composite honeycomb materials[J].Science China Technological Sciences, 2020, 63(8):1348-1370.
[92] Pan J, Shi Z Y, Wang T M.Variable-model SMA-driven spherical robot[J].Science China Technological Sciences, 2019, 62(8):1401-1411.
[93] Huang Y A, Zhu C, Xiong W N, et al.Flexible smart sensing skin for "Fly-by-Feel" morphing aircraft[J].Science China Technological Sciences, 2022, 65(1):1-29.
[94] Rendón M A, Josselyn G M, et al.Aircraft hybrid-electric propulsion:Development trends, challenges and opportunities[J].Journal of Control, Automation and Electrical Systems, 2021, 32(5):1244-1268.