Special to S&T Review

Frontier technology analysis and future prospects of aquatic un-manned aerial vehicle

  • HOU Taogang ,
  • JIN Dianzhe ,
  • GONG Yuyan ,
  • WANG Xinyang ,
  • PEI Xuan ,
  • YANG Xingbang
Expand
  • 1. School of Electronic Information Engineering, Beijing Jiaotong University, Beijing 100044, China;
    2. School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China

Received date: 2022-08-26

  Revised date: 2022-09-15

  Online published: 2023-02-10

Abstract

With the continuous development of bionic technology, human beings have made breakthroughs in obser-vation and simulation modeling of amphibians such as flying fish, Uria aalge, Gannet, and flying squid. On this basis, the field of aquatic unmanned aerial vehicle (AquaUAV) has also developed rapidly, but there are still some key technical difficulties. According to the types of bionic organisms, this review summariz-es the studies of the AquaUAV prototype, as well as the progress made in the wing structure, water/air propulsion method in recent years. Then, from the perspective of computer simulation and experiments, the research methods used in the study of kinematics and dynamics are analyzed. Finally, combined with the development status of this field, some key technical challenges are summarized and the future of AquaUAV is prospected.

Cite this article

HOU Taogang , JIN Dianzhe , GONG Yuyan , WANG Xinyang , PEI Xuan , YANG Xingbang . Frontier technology analysis and future prospects of aquatic un-manned aerial vehicle[J]. Science & Technology Review, 2023 , 41(2) : 5 -22 . DOI: 10.3981/j.issn.1000-7857.2023.02.001

References

[1] Müller R, Abaid N, Boreyko J B, et al.Biodiversifying bioinspiration[J].Bioinspiration & Biomimetics, 2018, 13(5):053001.
[2] Ajanic E, Feroskhan M, Mintchev S, et al.Bioinspired wing and tail morphing extends drone flight capabilities[J].Science Robotics, 2020, 5(47):eabc2897.
[3] Huang J G, Gong X, Wang Z Y, et al.The kinematics analysis of webbed feet during cormorants' swimming[C]//2016 IEEE International Conference on Robotics and Biomimetics (ROBIO).New York:ACM, 2016:301-306.
[4] Huang J G, Li J Y, Chen H Y, et al.Design and CFD based simulation analysis of a biotic webbed feet propulsion mechanism for hydroplaning[C]//2018 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2018:83-87.
[5] Pengelley R.All hands on deck:The sky's the limit for shipboard UAVs[N].Navy International, 2009, 12:12-17.
[6] Macy D, Eubank R, Atkins E, et al.Flying fish:A persistent ocean surveillance buoy with autonomous aerial repositioning[C]//AUVSI Conference 2009.Reston:AIAA, 2011:AIAA 2009-1902.
[7] Eubank R, Atkins E.Unattended autonomous mission and system management of an unmanned seaplane[C]//Infotech@Aerospace Conferences 2011.Reston:AIAA, 2011:AIAA 2011-1614.
[8] Eubank R D.Autonomous flight, fault, and energy management of the flying fish solar-powered seaplane[D].Michigan:University of Michigan, 2012.
[9] Eubank R D, Bradley J M, Atkins E M.Energy-aware multiflight planning for an unattended seaplane:Flying fish[J].Journal of Aerospace Information Systems, 2017, 14(2):73-91.
[10] 刘华欣.仿生跨介质航行器机理研究及原型机工程[D].北京:北京航空航天大学, 2009.
[11] Gao A, Techet A H.Design considerations for a robotic flying fish[C]//OCEANS'11 MTS/IEEE KONA.Piscataway:IEEE, 2011:1-8.
[12] Desbiens A L, Pope M T, Christensen D L, et al.Design principles for efficient, repeated jumpgliding[J].Bioinspiration & Biomimetics, 2014, 9(2):025009.
[13] Desbiens A L, Pope M, Berg F, et al.Efficient jumpgliding:Theory and design considerations[C]//2013 IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2013:4451-4458.
[14] Marks P.Robot takes to the air on the wings of a fish[J].New Scientist, 2013(2916):22.
[15] Mathaiyan V, Vijayanandh R, Vijayanandh R, et al.Conceptual design and numerical analysis of an unmanned amphibious vehicle[C]//AIAA Scitech 2021 Forum.Restona:AIAA, 2021:AIAA 2021-1285.
[16] Lock R J, Vaidyanathan R, Burgess S C.Development of a biologically inspired multi-modal wing model for aerial-aquatic robotic vehicles[C]//2010 IEEE/RSJ International Confer-ence on Intelligent Robots and Systems.Piscataway:IEEE, 2010:3404-3409.
[17] Lock R J.A biologically-inspired multi-modal wing for aerial-aquatic robotic vehicles[D].Bristol:University of Bristol, 2011
[18] Lock R J, Vaidyanathan R, Burgess S C.Design and experimental verification of a biologically inspired multimodal wing for aerial-aquatic robotic vehicles[C]//20124th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob).Pis-cataway:IEEE, 2012:681-687.
[19] Lock R J, Vaidyanathan R, Burgess S C.Impact of marine locomotion constraints on a bioinspired aerialaquatic wing:Experimental performance verification[J].Journal of Mechanisms and Robotics, 2014, 6(1):011001.
[20] Izraelevitz J S, Triantafyllou M S.A novel degree of freedom in flapping wings shows promise for a dual aerial/aquatic vehicle propulsor[C]//2015 IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2015:5830-5837.
[21] Ramamurti R, Geder J D, Edwards D, et al.Computational studies for the development of a hybrid UAV/UUV[C]//33rd AIAA Applied Aerodynamics Conference.Reston:AIAA, 2015:2414.
[22] Stewart W, Weisler W, Macleod M, et al.Design and demonstration of a seabird-inspired fixed-wing hybrid UAV-UUV system[J].Bioinspiration & Biomimetics, 2018, 13(5):056013.
[23] Fabian A, Feng Y, Swartz E, et al.Hybrid aerial underwater vehicle[R].Cambridge:Mit Lincoln Lab, 2012.
[24] Yang X B, Wang T M, Liang J H, et al.Numerical analysis of biomimetic gannet impacting with water during plunge-diving[C]//2012 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2012:569-574.
[25] Wang T M, Yang X B, Liang J H, et al.CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving[J].Bioinspiration & Biomimetics, 2013, 8(3):036006.
[26] Yang X, Liang J, Li Y, et al.Modeling and analysis of variable buoyancy device imitating waterfowl plumage structure[C]//The Twenty-first International Offshore and Polar Engineering Conference., in The Twenty-first International Offffshore and Polar Engineering Con-ference.Maui:ISOPE, 2011:ISOPE-I-11-199.
[27] Liang J H, Yang X B, Wang T M, et al.Design and experiment of a bionic gannet for plunge-diving[J].Journal of Bionic Engineering, 2013, 10(3):282-291.
[28] Liang J H, Yao G C, Wang T M, et al.Wing load investigation of the plungediving locomotion of a gannet Morus inspired submersible aircraft[J].Science China Technological Sciences, 2014, 57(2):390-402.
[29] Yang X B, Wang T M, Liang J H, et al.Submersible unmanned aerial vehicle concept design study[C]//2013 Aviation Technology, Integration, and Operations Conference.Reston:AIAA, 2013:4422.
[30] Yang X B, Liang J H, Wang T M, et al.Computational simulation of a submersible unmanned aerial vehicle impacting with water[C]//2013 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2013:1138-1143.
[31] Siddall R, Kovac M.Fast aquatic escape with a jet thruster[J].IEEE/ASME Transactions on Mechatronics, 2017, 22(1):217-226.
[32] Siddall R, Ortega Ancel A, Kovač M.Wind and water tunnel testing of a morphing aquatic micro air vehicle[J].Interface Focus, 2017, 7(1):20160085.
[33] Armanini S F, Siddall R, Kovac M.Modelling and simulation of a bioinspired aquatic micro aerial vehicle[C]//AIAA Aviation 2019 Forum.Reston:AIAA, 2019:3115.
[34] Guo D, Bacciaglia A, Simpson M, et al.Design and development a bimodal unmanned system[C]//AIAA Scitech 2019 Forum.Reston:AIAA, 2019:2096.
[35] Pena I, Billingsley E, Zimmerman S, et al.Comprehensive sizing process, actuation mechanism selection, and development of gannet-inspired amphibious drones[C]//AIAA Aviation 2020 Forum.Reston:AIAA, 2020:2764.
[36] Siddall R, Kovač M.A water jet thruster for an aquatic micro air vehicle[C]//2015 IEEE International Conference on Robotics and Automation.Piscataway:IEEE, 2015:3979-3985.
[37] Zufferey R, Ancel A O, Farinha A, et al.Consecutive aquatic jump-gliding with water-reactive fuel[J].Science Robotics, 2019, 4(34):eaax7330.
[38] Hou T G, Yang X B, Su H H, et al.Design and experiments of a squid-like aquatic-aerial vehicle with soft morphing fins and arms[C]//2019 International Conference on Robotics and Automation (ICRA).Piscataway:IEEE, 2019:4681-4687.
[39] Hou T G, Yang X B, Su H H, et al.Design, fabrication and morphing mechanism of soft fins and arms of a squid-like aquatic-aerial vehicle with morphology tradeoff[C]//2019 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2019:1020-1026.
[40] Chen Y F, Helbling E F, Gravish N, et al.Hybrid aerial and aquatic locomotion in an at-scale robotic insect[C]//2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).Piscataway:IEEE, 2015:331-338.
[41] Chen Y F, Wang H Q, Helbling E F, et al.A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot[J].Science Robotics, 2017, 2(11):eaao5619.
[42] Shealer D A.Foraging behaviour and food of seabirds[M]//Schreiber E A, Burger J.Biology of marine birds.Boca Raton:CRC Press, 2002:13-178.
[43] Laschi C, Cianchetti M.Soft robotics:New perspectives for robot bodyware and control[J].Frontiers in Bioengineering and Biotechnology, 2014, 2:3.
[44] Cheng N G, Lobovsky M B, Keating S J, et al.Design and analysis of a robust, low-cost, highly articulated manipulator enabled by jamming of granular media[C]//2012 IEEE In-ternational Conference on Robotics and Automation.Piscataway:IEEE, 2012:4328-4333.
[45] 王超.线驱动硅胶软体机械臂建模与控制[D].上海:上海交通大学, 2015.
[46] Kim S, Laschi C, Trimmer B.Soft robotics:A bioinspired evolution in robotics[J].Trends in Biotechnology, 2013, 31(5):287-294.
[47] Kim J S, Lee J Y, Lee K T, et al.Fabrication of 3D soft morphing structure using shape memory alloy (SMA) wire/polymer skeleton composite[J].Journal of Mechanical Science and Technology, 2013, 27(10):3123-3129.
[48] Jin H, Dong E B, Mao S X, et al.Locomotion modeling of an actinomorphic soft robot actuated by SMA springs[C]//2014 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2014:21-26.
[49] Nakabo Y, Mukai T, Asaka K.Biomimetic soft robots using IPMC[M]//Electroactive Polymers for Robotic Applications.London:Springer London, 2007:165-198.
[50] Stoimenov B L, Rossiter J, Mukai T.Soft ionic polymer metal composite (IPMC) robot swimming in viscous fluid[C]//SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.Proc SPIE 7287, Electroactive Polymer Actuators and Devices (EAPAD) 2009.San Diego:SPIE, 2009, 7287:757-764.
[51] Kempaiah R, Nie Z H.From nature to synthetic systems:Shape transformation in soft materials[J].Journal of Materials Chemistry B, 2014, 2(17):2357-2368.
[52] Cianchetti M, Calisti M, Margheri L, et al.Bioinspired locomotion and grasping in water:The soft eight-arm OCTOPUS robot[J].Bioinspiration & Biomimetics, 2015, 10(3):035003.
[53] Rus D, Tolley M T.Design, fabrication and control of soft robots[J].Nature, 2015, 521(7553):467-475.
[54] Roche E T, Horvath M A, Wamala I, et al.Soft robotic sleeve supports heart function[J].Science Translational Medicine, 2017, 9(373):eaaf3925.
[55] Tang W, Zhang C, Zhong Y D, et al.Customizing a selfhealing soft pump for robot[J].Nature Communications, 2021, 12(1):2247.
[56] Tolley M T, Shepherd R F, Karpelson M, et al.An untethered jumping soft robot[C]//2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.Piscataway:IEEE, 2014:561-566.
[57] Li G R, Chen X P, Zhou F H, et al.Self-powered soft robot in the Mariana Trench[J].Nature, 2021, 591(7848):66-71.
[58] Calisti M, Picardi G, Laschi C.Fundamentals of soft robot locomotion[J].Journal of the Royal Society, Interface, 2017, 14(130):20170101.
[59] Hou T G, Yang X B, Aiyama Y, et al.Design and experiment of a universal two-fingered hand with soft fingertips based on jamming effect[J].Mechanism and Machine Theory, 2019, 133:706-719.
[60] Li D C, Zhao S W, da Ronch A, et al.A review of modelling and analysis of morphing wings[J].Progress in Aerospace Sciences, 2018, 100:46-62.
[61] Shepherd R F, Stokes A A, Freake J, et al.Using explosions to power a soft robot[J].Angewandte Chemie International Edition, 2013, 52(10):2892-2896.
[62] Whitmore S A, Merkley D P.Arcignition of a 70%-85% hydrogen peroxide/ABS hybrid rocket system[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston:AIAA, 2017:5047.
[63] Chen Y T, Zhou J Y.The auto-ignition of kerosenebased synthetic fuel/hydrogen peroxide propellants and its injector design[C]//2018 Joint Propulsion Conference.Reston:AIAA, 2018:4775.
[64] Schneider S J.Hydrogen peroxide-water-ethanol monopropellant blend for CubeSat propulsion[C]//AIAA Propulsion and Energy 2020 Forum.Reston:AIAA, 2020:3809.
[65] Kolsgaard A.Hydrogen peroxide based reaction control system[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference.Reston:AIAA, 2017:4925.
[66] Siddall R, Kennedy G, Kovac M.High-power propulsion strategies for aquatic take-off in robotics[M]//Springer Proceedings in Advanced Robotics.Cham:Springer International Publishing, 2017:5-20.
[67] Roddy M, Hodges H, Roe L, et al.Solid state gas generator for small satellite deorbiter[C]//2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems.Piscataway:IEEE, 2017:644-649.
[68] Roddy M A, Huang P H A.A solid-state gas generator actuated deorbiter for CubeSats[J].Journal of Microelectromechanical Systems, 2019, 28(6):1068-1079.
[69] Norton A A, Minor M A.Pneumatic microactuator powered by the deflagration of sodium azide[J].Journal of Microelectromechanical Systems, 2006, 15(2):344-354.
[70] Tan Y H, Siddall R, Kovac M.Efficient aerial-aquatic locomotion with a single propulsion system[J].IEEE Robotics and Automation Letters, 2017, 2(3):1304-1311.
[71] Lu D, Xiong C K, Zhou H X, et al.Design, fabrication, and characterization of a multimodal hybrid aerial underwater vehicle[J].Ocean Engineering, 2021, 219:108324.
[72] Huang J G, Liang J H, Wang T M, et al.Numerical analysis of the body, webbed-feet, and wings during cormorant's take off[C]//2018 IEEE International Conference on Robotics and Biomimetics.Piscataway:IEEE, 2018:94-99.
[73] Deng J, Zhang L X, Liu Z Y, et al.Numerical prediction of aerodynamic performance for a flying fish during gliding flight[J].Bioinspiration & Biomimetics, 2019, 14(4):046009.
[74] Hou T G, Yang X B, Wang T M, et al.Locomotor transition:how squid jet from water to air[J].Bioinspiration & Biomimetics, 2020, 15(3):036014.
[75] Huang J G, Sun Y L, Wang T M, et al.Fluid-structure interaction hydrodynamics analysis on a deformed bionic flipper with nonuniformly distributed stiffness[J].IEEE Robotics and Au-tomation Letters, 2020, 5(3):4657-4662.
[76] Huang J G, Wang T M, Lueth T C, et al.CFD based investigation on the hydroplaning mechanism of a cormorant's webbed foot propulsion[J].IEEE Access, 2022, 8:31551-31561.
[77] Sharker S I, Holekamp S, Mansoor M M, et al.Water entry impact dynamics of diving birds[J].Bioinspiration & Biomimetics, 2019, 14(5):056013.
[78] Zhao D, Song S F, Su J L, et al.Learning bionic motions by imitating animals[C]//2020 IEEE International Conference on Mechatronics and Automation.Piscataway:IEEE, 2020:872-879.
[79] Park H, Choi H.Aerodynamic characteristics of flying fish in gliding flight[J].The Journal of Experimental Biology, 2010, 213(Pt 19):3269-3279.
[80] Chang E, Matloff L Y, Stowers A K, et al.Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion[J].Science Robotics, 2020, 5(38):eaay1246.
[81] Di Luca M, Mintchev S, Su Y X, et al.A bioinspired Separated Flow wing provides turbu-lence resilience and aerodynamic efficiency for miniature drones[J].Science Robotics, 2020, 5(38):eaay8533.
[82] Hedenström A, Johansson L C, Wolf M, et al.Bat flight generates complex aerodynamic tracks[J].Science, 2007, 316(5826):894-897.
[83] Young J, Walker S M, Bomphrey R J, et al.Details of insect wing design and deformation enhance aerodynamic function and flight efficiency[J].Science, 2009, 325(5947):1549-1552.
[84] Wen L, Wang T M, Wu G H, et al.Quantitative thrust efficiency of a self-propulsive robotic fish:Experimental method and hydrodynamic investigation[J].IEEE/ASME Transactions on Mechatronics, 2013, 18(3):1027-1038.
[85] Anderson E J, Grosenbaugh M A.Jet flow in steadily swimming adult squid[J].The Journal of Experimental Biology, 2005, 208(Pt 6):1125-1146.
[86] Bartol I K, Krueger P S, Stewart W J, et al.Hydrodynamics of pulsed jetting in juvenile and adult brief squid Lolliguncula brevis:Evidence of multiple jet ‘modes’ and their implications for propulsive efficiency[J].The Journal of Experimental Biology, 2009, 212(Pt 12):1889-1903.
[87] Bartol I K, Krueger P S, Jastrebsky R A, et al.Volumetric flow imaging reveals the importance of vortex ring formation in squid swimming tail-first and arms-first[J].The Journal of Experimental Biology, 2016, 219(Pt 3):392-403.
[88] Guo X Y, Li W B, Zhang W M.Adjustable stiffness elastic composite soft actuator for fast-moving robots[J].Science China Technological Sciences, 2021, 64(8):1663-1675.
[89] Rus D, Tolley M T.Design, fabrication and control of origami robots[J].Nature Reviews Materials, 2018, 3(6):101-112.
[90] Yang X B, Pei X.Hybrid system for powering unmanned aerial vehicles:demonstration and study cases[M]//Hybrid Technologies for Power Generation.Amsterdam:Elsevier, 2022:439-473.
[91] Wei X Y, Xiong J, Wang J, et al.New advances in fiberreinforced composite honeycomb materials[J].Science China Technological Sciences, 2020, 63(8):1348-1370.
[92] Pan J, Shi Z Y, Wang T M.Variable-model SMA-driven spherical robot[J].Science China Technological Sciences, 2019, 62(8):1401-1411.
[93] Huang Y A, Zhu C, Xiong W N, et al.Flexible smart sensing skin for "Fly-by-Feel" morphing aircraft[J].Science China Technological Sciences, 2022, 65(1):1-29.
[94] Rendón M A, Josselyn G M, et al.Aircraft hybrid-electric propulsion:Development trends, challenges and opportunities[J].Journal of Control, Automation and Electrical Systems, 2021, 32(5):1244-1268.
Outlines

/