Exclusive: Frontiers in Pacific volcano research

Deep carbon cycle and livable earth during subduction and magmatic processes

  • LI Haiyong ,
  • ZHANG Jinchang ,
  • HU Jingyuan ,
  • YE Junmin
Expand
  • 1. Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China;
    2. CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 511458, China;
    3. China-Pakistan Joint Research Center on Earth Science, CAS-HEC, Islamabad 45320, Pakistan;
    4. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

Received date: 2022-10-20

  Revised date: 2022-12-27

  Online published: 2023-02-10

Abstract

The short-term surface carbon cycle on the Earth's surface affects global climate change and the Earth's livable environment. More than 90% of the carbon content is stored in the deep Earth. The long-term deep carbon cycle in the Earth's interior has an important impact on the surface carbon cycle. Studying the deep carbon cycle has an important indicator significance for the surface carbon cycle. The carbon cycle is one of the most cutting-edge issues in the interdisciplinary field of geoscience. This paper presented a brief overview of deep carbon cycle in different tectonic backgrounds, such as convergent plate boundary, discrete plate boundary, intraplate environment and new type seamount, and expounds the scientific problems that need to be studied in depth in the future, which may cause the peer to pay more attention to the relevant research of deep carbon cycle, such as decarbonization mechanism and efficiency of subduction zone, and the existing form of carbon in mantle, et al.

Cite this article

LI Haiyong , ZHANG Jinchang , HU Jingyuan , YE Junmin . Deep carbon cycle and livable earth during subduction and magmatic processes[J]. Science & Technology Review, 2023 , 41(2) : 80 -88 . DOI: 10.3981/j.issn.1000-7857.2023.02.009

References

[1] Dasgupta R.Ingassing, storage, and outgassing of terrestrial carbon through geologic time[J].Reviews in Mineralogy & Geochemistry, 2013, 75:183-229.
[2] Berner R A.The long-term carbon cycle, fossil fuels and atmospheric composition[J].Nature, 2003, 426(6964):323-326.
[3] 张国良, 战明君.板块俯冲和岩浆过程中碳循环及深部碳储库[J].海洋地质与第四纪地质, 2019, 39(5):36-45.
[4] Lee C T A, Shen B, Slotnick B S, et al.Continental arcisland arc fluctuations, growth of crustal carbonates, and long-term climate change[J].Geosphere, 2012, 9(1):21-36.
[5] Wong K, Mason E, Brune S, et al.Deep carbon cycling over the past 200 million years:A review of fluxes in different tectonic settings[J].Frontiers in Earth Science, 2019, 7:263.
[6] 刘勇胜, 陈春飞, 何德涛, 等.俯冲带地球深部碳循环作用[J].中国科学:地球科学, 2019, 49(12):1982-2003.
[7] Rosenbauer R J, Thomas B, Bischoff J L, et al.Carbon sequestration via reaction with basaltic rocks:Geochemical modeling and experimental results[J].Geochimica et Cosmochimica Acta, 2012, 89:116-133.
[8] Plank T, Langmuir C H.The chemical composition of subducting sediment and its consequences for the crust and mantle[J].Chemical Geology, 1998, 145(3/4):325-394.
[9] 张立飞, 陶仁彪, 朱建江.俯冲带深部碳循环:问题与探讨[J].矿物岩石地球化学通, 2017, 36(2):185-196.
[10] Cook-Kollars J, Bebout G E, Collins N C, et al.Subduction zone metamorphic pathway for deep carbon cycling:I.Evidence from HP/UHP metasedimentary rocks, Italian Alps[J].Chemical Geology, 2014, 386:31-48.
[11] Kelemen P B, Manning C E.Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J].Proceedings of the National Academy of Sciences, 2015, 112(30):3997-4006.
[12] Skora S, Blundy J, Brooker R, et al.Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions[J].Journal of Petrology, 2015, 56(5):953-980.
[13] Stagno V, Tange Y, Miyajima N, et al.The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity[J].Geophysical Research Letters, 2011, 38(19):L19309.
[14] Thomson A R, Walter M J, Kohn S C, et al.Slab melting as a barrier to deep carbon subduction[J].Nature, 2016, 529:76-79.
[15] Frezzotti M L, Huizenga J M, Compagnoni R, et al.Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere[J].Geochimica et Cosmochimica Acta, 2014, 143:68-86.
[16] Ague J J, Nicolescu S.Carbon dioxide released from subduction zones by fluid-mediated reactions[J].Nature Geoscience, 2014, 7(5):355-360.
[17] Duncan M S, Dasgupta R.CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5 to 3.0 GPa:Implications for carbon flux in subduction zones[J].Geochim Cosmochim Acta, 2014, 124:328-347.
[18] Zheng Y F, Xu Z, Chen L, et al.Chemical geodynamics of mafic magmatism above subduction zones[J].Journal of Asian Earth Sciences, 2020, 194:104185.
[19] Kepezhinskas P, Defant M J.Contrasting styles of mantle metasomatism above subduction zones:Constraints from ultrama¢c xenoliths in Kamchatka[J].Geophysical Monograph, 1996:307-314.
[20] Kawamoto T, Yoshikawa M, Kumagai Y, et al.Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab[J].Proceedings of the National Academy of Sciences, 2013, 110(24):9663-9668.
[21] Kobayashi M, Sumino H, Nagao K, et al.Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge[J].Earth and Planetary Science Letters, 2017, 457:106-116.
[22] Yang J S, Wu W W, Lian D Y, et al.Peridotites, chromitites and diamonds in ophiolites[J].Nature Reviews Earth & Environment, 2021, 2:198-212.
[23] Peng W G, Zhang L F, Menzel M D, et al.Multistage CO 2 sequestration in the subduction zone:Insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J].Geochimica et Cosmochimica Acta, 2020, 270:218-243.
[24] Wallace P J.Volatiles in subduction zone magmas:Concentrations and fluxes based on melt inclusion and volcanic gas data[J].Volcanol Geotherm Research, 2005, 140(1/2/3):217-240.
[25] Blundy J, Cashman K V, Rust A, et al.A case for CO2-rich arc magmas[J].Earth Planet, 2010, 290(3/4):289-301.
[26] 马东东, 刘芳, 祝红丽, 等.菲律宾马尼拉新生代火山岩的Sr-Nd-Pb-Ca同位素特征:对南海俯冲过程中深部碳循环的制约[J].地球化学, 2018, 47(6):593-603.
[27] Wang X, Wang Z C, Liu Y S, et al.Calcium stable isotopes of Tonga and Mariana arc lavas:Implications for slab fluid-mediated carbonate transfer in cold subduction zones[J].Journal of Geophysical Research:Solid Earth, 2021, 126(3):e2020JB020207.
[28] Cartigny P, Pineau F, Aubaud C, et al.Towards a consistent mantle carbon flux estimate:Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N)[J].Earth and Planetary Science Letters, 2008, 265(3/4):672-685.
[29] Koleszar A M, Saal A E, Hauri E H, et al.The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior inmelt inclusions[J].Earth and Planetary Science Letters, 2009, 287(3/4):442-452.
[30] Helo C, Longpré M A, Shimizu N, et al.Explosive eruptions at midocean ridges driven by CO2-rich magmas[J].Nature Geoscience, 2011, 4(4):260-263.
[31] Michael P J, Graham D W.The behavior and concentration of CO 2 in the suboceanic mantle:Inferences from undegassed ocean ridge and ocean island basalts[J].Lithos, 2015, 236/237:338-351.
[32] Hauri E H, Maclennan J, McKenzie D, et al.CO2 content beneath northern Iceland and the variability of mantle carbon[J].Geology, 2017, 46(1):55-58.
[33] 祝红丽, 张兆峰, 刘峪菲, 等.印度洋中脊玄武岩钙同位素组成:对古老海相碳酸盐再循环的制约[C]//中国地球科学联合学术年会.北京:中国地球物理学会, 中国地质学会, 2014:1774.
[34] Gillis K M, Coogan L A.Secular variation in carbon uptake into the ocean crust[J].Earth and Planetary Science Letters, 2011, 302(3/4):385-392.
[35] Le Voyer M, Hauri E H, Cottrell E, et al.Carbon fluxes and primary magma CO2 contents along the global midocean ridge system[J].Geochemistry, Geophysics, Geosystems, 2019, 20(3):1387-1424.
[36] Wessel P, Sandwell D T, Kim S S.The global seamount census[J].Oceanography, 2010, 23(1):24-33.
[37] Yesson C, Clark M R, Taylor M L, et al.The global distribution of seamounts based on 30 arc seconds bathymetry data[J].Deep Sea Research Part I:Oceanographic Research Papers, 2011, 58(4):442-453.
[38] Neumann E R, Wulff-Pedersen E, Pearson N J, et al.Mantle xenoliths from Tenerife (Canary Islands):Evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism[J].Journal of Petrology, 2002, 43(5):825-857.
[39] Zhang G L, Wang S, Zhang J, et al.Evidence for the essential role of CO 2 in the volcanism of the waning Caroline mantle plume[J].Geochimica et Cosmochimica Acta, 2020, 290:391-407.
[40] Yao J H, Huang J, Zhang G L.Zinc isotope constraints on carbonated mantle sources for rejuvenated-stage lavas from Kauai, Hawaii[J].Chemical Geology, 2022, 605:120967.
[41] Neave D A, Maclennan J, Edmonds M, et al.Melt mixing causes negative correlation of trace element enrichment and CO 2 content prior to an Icelandic eruption[J].Earth Planet, 2014, 400:272-283.
[42] Miller W G R, Maclennan J, Shorttle O, et al.Estimating the carbon content of the deep mantle with Icelandic melt inclusions[J].Earth and Planetary Science Letters, 2019, 523:115699.
[43] Anderson K R, Poland M P.Abundant carbon in the mantle beneath Hawaii[J].Nature Geoscience, 2017, 10(9):704-708.
[44] Moore L R, Gazel E, Bodnar R J.The volatile budget of Hawaiian magmatism:Constraints from melt inclusions from Haleakala volcano, Hawaii[J].Journal of Volcanology and Geothermal Research, 2021:410:107144.
[45] Huang S C, Farkas J, Jacobsen S B.Stable calcium isotopic compositions of Hawaiian shield lavas:Evidence for recycling of ancient marine carbonates into the mantle[J].Geochimica et Cosmochimica Acta, 2011, 75(17):4987-4997.
[46] Wang X J, Chen L H, Hofmann A W, et al.Recycled ancient ghost carbonate in the Pitcairn mantle plume[J].Proceedings of the National Academy of Sciences, 2018, 115:8682-8687.
[47] Beunon H, Mattielli N, Doucet L S, et al.Mantle heterogeneity through Zn systematics in oceanic basalts:Evidence for a deep carbon cycling[J].Earth-Science Reviews, 2020, 205:103174.
[48] Zhang G L, Wang S, Huang S C, et al.CO2-Rich rejuvenated stage lavas on Hawaiian Islands[J].Geochemistry Geophysics Geosystems, 2022, 23(9):1-17.
[49] Zhang X Y, Chen L H, Wang X J, et al.Zinc isotopic evidence for recycled carbonate in the deep mantle[J].Nature Communications, 2022, 13:6085.
[50] Cheng Z G, Zhang Z C, Xie Q H, et al.Subducted slabplume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province[J].Earth Planetary Science Letters, 2018, 489:100-110.
[51] Tian H C, Yang W, Li S G, et al.Could sedimentary carbonates be recycled into the lower mantle? Constraints from Mg isotopic composition of Emeishan basalts[J].Lithos, 2017:292/293:250-261.
[52] Yang C, Liu, S A.Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan Large Igneous Province[J].Journal of Geophysical Research:Solid Earth, 2019, 124(12):12537-12555.
[53] Hirano N, Kawamura K, Hattori M, et al.A new type of intra-plate volcanism; Young Alkali-basalts discovered from the subducting Pacific Plate, northern Japan Trench[J].Geophysical Research Letters, 2001, 28(14):2719-2722.
[54] Machida S, Hirano N, Sumino H, et al.Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere[J].Earth and Planetary Science Letters, 2015, 426:267-279.
[55] Liu J, Hirano N, Machida S, et al.Melting of recycled ancient crust responsible for the Gutenberg discontinuity[J].Nature Communications, 2020, 11(1):1-9.
[56] Yang J, Faccenda M.Intraplate volcanism originating from upwelling hydrous mantle transition zone[J].Nature, 2020, 579(7797):88-91.
[57] Hirano N, Takahashi E, Yamamoto J, et al.Volcanism in response to plate flexure[J].Science, 2006, 313(5792):1426-1428.
[58] Yamamoto J, Korenaga J, Hirano N, et al.Melt-rich lithosphere-asthenosphere boundary inferred from petitspot volcanoes[J].Geology, 2014, 42(11):967-970.
[59] Machida S, Hirano N, Kimura J I.Evidence for recycled plate material in pacific upper mantle unrelated to plumes[J].Geochimica et Cosmochimica Acta, 2009, 73:3028-3037.
[60] Michael P J, Graham D W.The behavior and concentration of CO 2 in the suboceanic mantle:Inferences from undegassed ocean ridge and ocean island basalts[J].Lithos, 2015, 236/237:338-351.
[61] Yamamoto J, Hirano N, Abe N, et al.Noble gas isotopic compositions of mantle xenoliths from northwestern Pacific lithosphere[J].Chemical Geology, 2009, 268(3):313-323.
[62] Okumura S, Hirano N.Carbon dioxide emission to Earth's surface by deep-sea volcanism[J].Geology, 2013, 41(11):1167-1170.
[63] Machida S, Kogiso T, Hirano N.Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2[J].Nature Communications, 2017, 8(1):1-7.
Outlines

/