[1] Dasgupta R.Ingassing, storage, and outgassing of terrestrial carbon through geologic time[J].Reviews in Mineralogy & Geochemistry, 2013, 75:183-229.
[2] Berner R A.The long-term carbon cycle, fossil fuels and atmospheric composition[J].Nature, 2003, 426(6964):323-326.
[3] 张国良, 战明君.板块俯冲和岩浆过程中碳循环及深部碳储库[J].海洋地质与第四纪地质, 2019, 39(5):36-45.
[4] Lee C T A, Shen B, Slotnick B S, et al.Continental arcisland arc fluctuations, growth of crustal carbonates, and long-term climate change[J].Geosphere, 2012, 9(1):21-36.
[5] Wong K, Mason E, Brune S, et al.Deep carbon cycling over the past 200 million years:A review of fluxes in different tectonic settings[J].Frontiers in Earth Science, 2019, 7:263.
[6] 刘勇胜, 陈春飞, 何德涛, 等.俯冲带地球深部碳循环作用[J].中国科学:地球科学, 2019, 49(12):1982-2003.
[7] Rosenbauer R J, Thomas B, Bischoff J L, et al.Carbon sequestration via reaction with basaltic rocks:Geochemical modeling and experimental results[J].Geochimica et Cosmochimica Acta, 2012, 89:116-133.
[8] Plank T, Langmuir C H.The chemical composition of subducting sediment and its consequences for the crust and mantle[J].Chemical Geology, 1998, 145(3/4):325-394.
[9] 张立飞, 陶仁彪, 朱建江.俯冲带深部碳循环:问题与探讨[J].矿物岩石地球化学通, 2017, 36(2):185-196.
[10] Cook-Kollars J, Bebout G E, Collins N C, et al.Subduction zone metamorphic pathway for deep carbon cycling:I.Evidence from HP/UHP metasedimentary rocks, Italian Alps[J].Chemical Geology, 2014, 386:31-48.
[11] Kelemen P B, Manning C E.Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up[J].Proceedings of the National Academy of Sciences, 2015, 112(30):3997-4006.
[12] Skora S, Blundy J, Brooker R, et al.Hydrous phase relations and trace element partitioning behaviour in calcareous sediments at subduction-zone conditions[J].Journal of Petrology, 2015, 56(5):953-980.
[13] Stagno V, Tange Y, Miyajima N, et al.The stability of magnesite in the transition zone and the lower mantle as function of oxygen fugacity[J].Geophysical Research Letters, 2011, 38(19):L19309.
[14] Thomson A R, Walter M J, Kohn S C, et al.Slab melting as a barrier to deep carbon subduction[J].Nature, 2016, 529:76-79.
[15] Frezzotti M L, Huizenga J M, Compagnoni R, et al.Diamond formation by carbon saturation in C-O-H fluids during cold subduction of oceanic lithosphere[J].Geochimica et Cosmochimica Acta, 2014, 143:68-86.
[16] Ague J J, Nicolescu S.Carbon dioxide released from subduction zones by fluid-mediated reactions[J].Nature Geoscience, 2014, 7(5):355-360.
[17] Duncan M S, Dasgupta R.CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5 to 3.0 GPa:Implications for carbon flux in subduction zones[J].Geochim Cosmochim Acta, 2014, 124:328-347.
[18] Zheng Y F, Xu Z, Chen L, et al.Chemical geodynamics of mafic magmatism above subduction zones[J].Journal of Asian Earth Sciences, 2020, 194:104185.
[19] Kepezhinskas P, Defant M J.Contrasting styles of mantle metasomatism above subduction zones:Constraints from ultrama¢c xenoliths in Kamchatka[J].Geophysical Monograph, 1996:307-314.
[20] Kawamoto T, Yoshikawa M, Kumagai Y, et al.Mantle wedge infiltrated with saline fluids from dehydration and decarbonation of subducting slab[J].Proceedings of the National Academy of Sciences, 2013, 110(24):9663-9668.
[21] Kobayashi M, Sumino H, Nagao K, et al.Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge[J].Earth and Planetary Science Letters, 2017, 457:106-116.
[22] Yang J S, Wu W W, Lian D Y, et al.Peridotites, chromitites and diamonds in ophiolites[J].Nature Reviews Earth & Environment, 2021, 2:198-212.
[23] Peng W G, Zhang L F, Menzel M D, et al.Multistage CO 2 sequestration in the subduction zone:Insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China[J].Geochimica et Cosmochimica Acta, 2020, 270:218-243.
[24] Wallace P J.Volatiles in subduction zone magmas:Concentrations and fluxes based on melt inclusion and volcanic gas data[J].Volcanol Geotherm Research, 2005, 140(1/2/3):217-240.
[25] Blundy J, Cashman K V, Rust A, et al.A case for CO2-rich arc magmas[J].Earth Planet, 2010, 290(3/4):289-301.
[26] 马东东, 刘芳, 祝红丽, 等.菲律宾马尼拉新生代火山岩的Sr-Nd-Pb-Ca同位素特征:对南海俯冲过程中深部碳循环的制约[J].地球化学, 2018, 47(6):593-603.
[27] Wang X, Wang Z C, Liu Y S, et al.Calcium stable isotopes of Tonga and Mariana arc lavas:Implications for slab fluid-mediated carbonate transfer in cold subduction zones[J].Journal of Geophysical Research:Solid Earth, 2021, 126(3):e2020JB020207.
[28] Cartigny P, Pineau F, Aubaud C, et al.Towards a consistent mantle carbon flux estimate:Insights from volatile systematics (H2O/Ce, δD, CO2/Nb) in the North Atlantic mantle (14°N and 34°N)[J].Earth and Planetary Science Letters, 2008, 265(3/4):672-685.
[29] Koleszar A M, Saal A E, Hauri E H, et al.The volatile contents of the Galapagos plume; evidence for H2O and F open system behavior inmelt inclusions[J].Earth and Planetary Science Letters, 2009, 287(3/4):442-452.
[30] Helo C, Longpré M A, Shimizu N, et al.Explosive eruptions at midocean ridges driven by CO2-rich magmas[J].Nature Geoscience, 2011, 4(4):260-263.
[31] Michael P J, Graham D W.The behavior and concentration of CO 2 in the suboceanic mantle:Inferences from undegassed ocean ridge and ocean island basalts[J].Lithos, 2015, 236/237:338-351.
[32] Hauri E H, Maclennan J, McKenzie D, et al.CO2 content beneath northern Iceland and the variability of mantle carbon[J].Geology, 2017, 46(1):55-58.
[33] 祝红丽, 张兆峰, 刘峪菲, 等.印度洋中脊玄武岩钙同位素组成:对古老海相碳酸盐再循环的制约[C]//中国地球科学联合学术年会.北京:中国地球物理学会, 中国地质学会, 2014:1774.
[34] Gillis K M, Coogan L A.Secular variation in carbon uptake into the ocean crust[J].Earth and Planetary Science Letters, 2011, 302(3/4):385-392.
[35] Le Voyer M, Hauri E H, Cottrell E, et al.Carbon fluxes and primary magma CO2 contents along the global midocean ridge system[J].Geochemistry, Geophysics, Geosystems, 2019, 20(3):1387-1424.
[36] Wessel P, Sandwell D T, Kim S S.The global seamount census[J].Oceanography, 2010, 23(1):24-33.
[37] Yesson C, Clark M R, Taylor M L, et al.The global distribution of seamounts based on 30 arc seconds bathymetry data[J].Deep Sea Research Part I:Oceanographic Research Papers, 2011, 58(4):442-453.
[38] Neumann E R, Wulff-Pedersen E, Pearson N J, et al.Mantle xenoliths from Tenerife (Canary Islands):Evidence for reactions between mantle peridotites and silicic carbonatite melts inducing Ca metasomatism[J].Journal of Petrology, 2002, 43(5):825-857.
[39] Zhang G L, Wang S, Zhang J, et al.Evidence for the essential role of CO 2 in the volcanism of the waning Caroline mantle plume[J].Geochimica et Cosmochimica Acta, 2020, 290:391-407.
[40] Yao J H, Huang J, Zhang G L.Zinc isotope constraints on carbonated mantle sources for rejuvenated-stage lavas from Kauai, Hawaii[J].Chemical Geology, 2022, 605:120967.
[41] Neave D A, Maclennan J, Edmonds M, et al.Melt mixing causes negative correlation of trace element enrichment and CO 2 content prior to an Icelandic eruption[J].Earth Planet, 2014, 400:272-283.
[42] Miller W G R, Maclennan J, Shorttle O, et al.Estimating the carbon content of the deep mantle with Icelandic melt inclusions[J].Earth and Planetary Science Letters, 2019, 523:115699.
[43] Anderson K R, Poland M P.Abundant carbon in the mantle beneath Hawaii[J].Nature Geoscience, 2017, 10(9):704-708.
[44] Moore L R, Gazel E, Bodnar R J.The volatile budget of Hawaiian magmatism:Constraints from melt inclusions from Haleakala volcano, Hawaii[J].Journal of Volcanology and Geothermal Research, 2021:410:107144.
[45] Huang S C, Farkas J, Jacobsen S B.Stable calcium isotopic compositions of Hawaiian shield lavas:Evidence for recycling of ancient marine carbonates into the mantle[J].Geochimica et Cosmochimica Acta, 2011, 75(17):4987-4997.
[46] Wang X J, Chen L H, Hofmann A W, et al.Recycled ancient ghost carbonate in the Pitcairn mantle plume[J].Proceedings of the National Academy of Sciences, 2018, 115:8682-8687.
[47] Beunon H, Mattielli N, Doucet L S, et al.Mantle heterogeneity through Zn systematics in oceanic basalts:Evidence for a deep carbon cycling[J].Earth-Science Reviews, 2020, 205:103174.
[48] Zhang G L, Wang S, Huang S C, et al.CO2-Rich rejuvenated stage lavas on Hawaiian Islands[J].Geochemistry Geophysics Geosystems, 2022, 23(9):1-17.
[49] Zhang X Y, Chen L H, Wang X J, et al.Zinc isotopic evidence for recycled carbonate in the deep mantle[J].Nature Communications, 2022, 13:6085.
[50] Cheng Z G, Zhang Z C, Xie Q H, et al.Subducted slabplume interaction traced by magnesium isotopes in the northern margin of the Tarim Large Igneous Province[J].Earth Planetary Science Letters, 2018, 489:100-110.
[51] Tian H C, Yang W, Li S G, et al.Could sedimentary carbonates be recycled into the lower mantle? Constraints from Mg isotopic composition of Emeishan basalts[J].Lithos, 2017:292/293:250-261.
[52] Yang C, Liu, S A.Zinc isotope constraints on recycled oceanic crust in the mantle sources of the Emeishan Large Igneous Province[J].Journal of Geophysical Research:Solid Earth, 2019, 124(12):12537-12555.
[53] Hirano N, Kawamura K, Hattori M, et al.A new type of intra-plate volcanism; Young Alkali-basalts discovered from the subducting Pacific Plate, northern Japan Trench[J].Geophysical Research Letters, 2001, 28(14):2719-2722.
[54] Machida S, Hirano N, Sumino H, et al.Petit-spot geology reveals melts in upper-most asthenosphere dragged by lithosphere[J].Earth and Planetary Science Letters, 2015, 426:267-279.
[55] Liu J, Hirano N, Machida S, et al.Melting of recycled ancient crust responsible for the Gutenberg discontinuity[J].Nature Communications, 2020, 11(1):1-9.
[56] Yang J, Faccenda M.Intraplate volcanism originating from upwelling hydrous mantle transition zone[J].Nature, 2020, 579(7797):88-91.
[57] Hirano N, Takahashi E, Yamamoto J, et al.Volcanism in response to plate flexure[J].Science, 2006, 313(5792):1426-1428.
[58] Yamamoto J, Korenaga J, Hirano N, et al.Melt-rich lithosphere-asthenosphere boundary inferred from petitspot volcanoes[J].Geology, 2014, 42(11):967-970.
[59] Machida S, Hirano N, Kimura J I.Evidence for recycled plate material in pacific upper mantle unrelated to plumes[J].Geochimica et Cosmochimica Acta, 2009, 73:3028-3037.
[60] Michael P J, Graham D W.The behavior and concentration of CO 2 in the suboceanic mantle:Inferences from undegassed ocean ridge and ocean island basalts[J].Lithos, 2015, 236/237:338-351.
[61] Yamamoto J, Hirano N, Abe N, et al.Noble gas isotopic compositions of mantle xenoliths from northwestern Pacific lithosphere[J].Chemical Geology, 2009, 268(3):313-323.
[62] Okumura S, Hirano N.Carbon dioxide emission to Earth's surface by deep-sea volcanism[J].Geology, 2013, 41(11):1167-1170.
[63] Machida S, Kogiso T, Hirano N.Petit-spot as definitive evidence for partial melting in the asthenosphere caused by CO2[J].Nature Communications, 2017, 8(1):1-7.