[1] Castelvecchi D.Long-awaited accelerator ready to explore origins of elements[J].Nature, 2022, 605:201.
[2] Zhou X H, Yang J C, the HIAF project team.Status of the high-intensity heavy-ion accelerator facility in China[J].AAPPS Bulletin, 2022, 32:35.
[3] Wang H W, Fan G T, Liu L X, et al.Commissioning of laser electron gamma beamline SLEGS at SSRF[J].Nuclear Science and Techniques, 2022, 33:87.
[4] Gargiulo S, Madan I, Carbone F.Nuclear excitation by electron capture in excited ions[J].Physical Review Letters, 2022, 128(21):212502.
[5] Wu Y B, Gargiulo S, Carbone F, et al.Dynamical control of nuclear isomer depletion via electron vortex beams[J].Physical Review Letters, 2022, 128(16):162501.
[6] Feng J, Wang W Z, Fu C B, et al.Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons[J].Physical Review Letters, 2022, 128(5):052501.
[7] Ahn D S, Amano J, Baba H, et al.Discovery of 39Na[J].Physical Review Letters, 2022, 129(21):212502.
[8] Sommer F, Knight K, Rossi D M, et al.Charge radii of 55,56Ni reveal a surprisingly similar behavior at N=28 in Ca and Ni isotopes[J].Physical Review Letters, 2022, 129(13):132501.
[9] Crawford H L, Tripathi V, Allmond J M, et al.Crossing N=28 toward the neutron drip line:First measurement of half-lives at FRIB[J].Physical Review Letters, 2022, 129(21):212501.
[10] Wang Z A, Pei J C, Chen Y J, et al.Bayesian approach to heterogeneous data fusion of imperfect fission yields for augmented evaluations[J].Physical Review C, 2022, 106:L021304.
[11] Wei X B, Wei H L, Wang Y T, et al.Multiple-models predictions for drip line nuclides in projectile fragmentation of 40,48Ca, 58,64Ni, and 78,86Kr at 140 MeV/u[J].Nuclear Science and Techniques, 2022, 33:15.
[12] Lalanne L, Sorlin O, Poves A, et al.Structure of 36Ca under the Coulomb magnifying glass[J].Physical Review Letters, 2022, 129(12):122501.
[13] Koszorus A, Yang X F, Jiang W G, et al.Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N=32[J].Nature Physics, 2021, 17(4):439-443.
[14] Enciu M, Liu H N, Obertelli A, et al.Extended p3/2 neutron orbital and the N=32 shell closure in 52Ca[J].Physical Review Letters, 2022, 129(26):262501.
[15] Duer M, Aumann T, Gernhäuser R, et al.Observation of a correlated free four-neutron system[J].Nature, 2022, 606:678-682.
[16] Li J G, Michel N, Hu B S, et al.Ab initio no-core Gamow shell-model calculations of multineutron systems[J].Physical Review C, 2022, 100:054313.
[17] Sobotka L G, Piarulli M.Collisions hint that four neutrons form a transient isolated entity[J].Nature, 2022, 606:656-657.
[18] Adsley P, Heine M, Jenkins D G, et al.Extending the Hoyle-state paradigm to 12C+12C fusion[J].Physical Review Letters, 2022, 129(10):102701.
[19] Hongo M, Son D T.Universal properties of weakly bound two-neutron halo nuclei[J].Physical Review Letters, 2022, 128(21):212501.
[20] Ayyad Y, Mittig W, Tang T, et al.Evidence of a nearthreshold resonance in 11B relevant to the β-delayed proton emission of 11Be[J].Physical Review Letters, 2022, 129(1):012501.
[21] Lopez-Saavedra E, Almaraz-Calderon S, Asher B W, et al.Observation of a near-threshold proton resonance in 11B[J].Physical Review Letters, 2022, 129(1):012502.
[22] Sargsyan G H, Launey K D, Burkey M T, et al.Impact of clustering on the 8Li β decay and recoil form factors[J].Physical Review Letters, 2022, 128(20):202503.
[23] Lu B N, Li N, Elhatisari S, et al.Perturbative quantum Monte Carlo method for nuclear physics[J].Physical Review Letters, 2022, 128(24):242501.
[24] Lu J X, Wang C X, Xiao Y, et al.Accurate relativistic chiral nucleon-nucleon interaction up to next-to-nextto-leading order[J].Physical Review Letters, 2022, 128(14):142002.
[25] Lü C J, Chen F Q, Sun Y, et al.ΔI=2 bifurcation as a characteristic feature of scissors rotational bands[J].Physical Review Letters, 2022, 129(4):042502.
[26] Hen O, Sargsian M, Weinstein L B, et al.Momentum sharing in imbalanced Fermi systems[J].Science, 2014, 346(6209):614.
[27] Hen O, Miller G A, Piasetzky E, et al.Nucleon-nucleon correlations, short-lived excitations, and the quarks within[J].Review of Modern Physics, 2017, 89:045002.
[28] Li S, Cruz-Torres R, Santiesteban N, et al.Revealing the short-range structure of the mirror nuclei 3H and 3He[J].Nature, 2022, 609:41.
[29] Burkey M T, Savard G, Gallant A T, et al.Improved limit on tensor currents in the weak interaction from 8Li β decay[J].Physical Review Letters, 2022, 128(20):202502.
[30] Auranen K, Briscoe A D, Ferreira L S, et al.Nanosecond-scale proton emission from strongly oblate-deformed 149Lu[J].Physical Review Letters, 2022, 128(11):112501.
[31] Hebborn C, Hupin G, Kravvaris K, et al.Gysbers, ab initio prediction of the 4He(d,γ)6Li big bang radiative capture[J].Physical Review Letters, 2022, 129(4):042503.
[32] Ren Z X, Vretenar D, Niksic T, et al.Dynamical synthesis of 4He in the scission phase of nuclear fission[J].Physical Review Letters, 2022, 128(17):172501.
[33] Yang L, Lin C J, Yamaguchi H, et al.Breakup of the proton halo nucleus 8B near barrier energies[J].Nature Communications, 2022, 13:7193.
[34] Liu J J, Xu X X, Sun L J, et al.Observation of a strongly isospin-mixed doublet in 26Si via β-delayed two-proton decay of 26P[J].Physical Review Letters, 2022, 129(24):242502.
[35] Li H F, Naimi S, Sprouse T M, et al.First application of mass measurements with the Rare-RI ring reveals the solar r-process abundance trend at A=122 and A=123[J].Physical Review Letters, 2022, 128(15):152701.
[36] Gao B, Jiao T Y, Li Y T, et al.Deep underground laboratory measurement of 13C(α, n)16O in the Gamow windows of the s and i processes[J].Physical Review Letters, 2022, 129(13):132701.
[37] Zhan L, He J, deBoer R J, et al.Measurement of 19F(p, γ) 20Ne reaction suggests CNO breakout in first stars[J].Nature, 2022, 610:656.
[38] Reinhard P G, Roca-Maza X, Nazarewicz W.Combined theoretical analysis of the parity-violating asymmetry for 48Ca and 208Pb[J].Physical Review Letters, 2022, 129(23):232501.
[39] Adhikari D, Albataineh H, Androic D, et al.New Measurements of the beam-normal single spin asymmetry in elastic electron scattering over a range of spin-0 nuclei[J].Physical Review Letters, 2022, 128(14):142501.
[40] Malbrunot-Ettenauer S, Kaufmann S, Bacca S, et al.Nuclear charge radii of the nickel isotopes 58-68,70Ni[J].Physical Review Letters, 2022, 128(2):022502.
[41] Hu B S, Jiang W G, Miyagi T, et al.Ab initio prediction link the skin of 208Pb to the nuclear forces[J].Nature Physics, 2022, 18:1196.
[42] Komoltsev O, Kurkela A.How perturbative QCD constrains the equation of state at neutron-star densities[J].Physical Review Letters, 2022, 128(20):202701.
[43] Bzdak A, Esumi S, Koch V, et al.Mapping the phases of quantum chromodynamics with beam energy scan[J].Physics Reports, 2020, 853:1.
[44] Chen J, Keane D, Ma Y G, et al.Antinuclei in heavyion collisions[J].Physics Reports, 2018, 760:1.
[45] 马余刚, 许怒, 刘峰.基于HIAF集群的QCD相结构研究[J].中国科学:物理学力学天文学, 2020, 50:112009.
[46] Liang Z T, Wang X N.Globally polarized quark-gluon plasma in non-central A+A collisions[J].Physical Review Letters, 2005, 94(10):102301.
[47] Adamczyk L, Adkins J K, Agakishiev G, et al.Global Λ hyperon polarization in nuclear collisions[J].Nature, 2017, 548:62-65.
[48] Abdallah M S, Aboona B E, Adam J, et al.Pattern of global spin alignment of φ and K*0 vector heavy-ion in nuclear collisions[J].Nature, 2023, doi:10.1038/S41586-d:PDF.pdf022-05557-5.
[49] Sheng X L, Oliva L, Wang Q.What can we learn from the global spin alignment of φ mesons in heavy-ion collisions?[J].Physical Review D, 2020, 101:096005.
[50] Sheng X L, Wang Q, Wang X N.Improved quark coalescence model for spin alignment and polarization of hadrons[J].Physical Review D, 2020, 102:056013.
[51] Acharya S, Adamova D, Adler A, et al.Direct observation of the dead-cone effect in quantum chromodynamics[J].Nature, 2022, 605:440.
[52] Tumasyan A, Adam W, Andrejkovic J W, et al.Probing charm quark dynamics via multiparticle correlations in Pb-Pb collisions at √s=5.02 TeV[J].Physical Review Letters, 2022, 129(2):022001.
[53] Acharya S, Adamová D, Adler A, et al.Measurement of prompt D0, Λc+, and Σc0,++ (2455) production in proton-proton collisions at √s=13 TeV[J].Physical Review Letters, 2022, 128(1):012001.
[54] Abdallah M S, Adam J, Adamczyk L, et al.Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at √s=200 GeV[J].Physical Review Letters, 2022, 128(9):092301.
[55] Abdallah M S, Aboona B E, Adam J, et al.Measurements of proton high-order cumulants in √s=3 GeV Au+Au collisions and implications for the QCD critical point[J].Physical Review Letters, 2022, 128(20):202303.
[56] Zhao W B, Ke W Y, Chen W, et al.From hydrodynamics to jet quenching, coalescence, and hadron cascade:A coupled approach to solving the RAA ⊗ v2 puzzle[J].Physical Review Letters, 2022, 128(2):022302.
[57] He M, Wu B G, Rapp R.Collectivity of J/ψ mesons in heavy-ion collisions[J].Physical Review Letters, 2022, 128(16):162301.
[58] Accardi A, Albacete J L, Anselmino M, et al.ElectronIon Collider:The next QCD frontier[J].European Physical Journal A, 2016, 52(9):268.
[59] 曹须, 常雷, 畅宁波, 等.中国极化电子离子对撞机计[J].核技术, 2020, 43(2):3-61.
[60] Gelis F, Iancu E, Jalilian-Marian J, et al.The color glass condensate[J].Annual Review of Nuclear and Particle Science, 2010, 60:463-489.
[61] Sciencesprings[EB/OL].[2023-01-01].https://sciencesprings.wordpress.com/tag/cgc-color-glass-condensate/.
[62] Shi Y, Wang L, Wei S Y, et al.Pursuing the precision study for color glass condensate in forward hadron productions[J].Physical Review Letters, 2022, 128(20):202302.
[63] Ma Y G, Zhang S.Influence of nuclear structure in relativistic heavy-ion collisions[M]//Handbook of Nuclear Physics.Singapore:Springer, 2022.
[64] Giacalone G, Jia J Y, Zhang C J.Impact of nuclear deformation on relativistic heavy-ion collisions:Assessing consistency in nuclear physics across energy scales[J].Physical Review Letters, 2021, 127(24):242301.
[65] Zhang C J, Jia J Y.Evidence of quadrupole and octupole deformations in 96Zr+96Zr and 96Ru+96Ru collisions at ultrarelativistic energies[J].Physical Review Letters, 2022, 128(2):022301.
[66] Bally B, Bender M, Giacalone G, et el.Evidence of the triaxial structure of 129Xe at the Large Hadron Collider[J].Physical Review Letters, 2022, 128(8):082301.
[67] Bally B, Brandenburg J D, Giacalone G, et al.Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart[J/OL].[2022-09-22].arXiv:2209.11042.
[68] Adams D Q, Alduino C, Alfonso K, et al.Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE[J].Nature, 2022, 604:53-58.
[69] Adams D Q, Alduino1 C, Alfonso K, et al.New direct limit on neutrinoless double beta decay half-life of 128Te with CUORE[J].Physical Review Letters, 2022, 129(22):222501.
[70] Azzolini O, Beeman J W, Bellini F, et al.Final result on the neutrinoless double beta decay of 82Se with CUPID-0[J].Physical Review Letters, 2022, 129(11):111801.
[71] Chiara C J, Carroll J J, Carpenter M P, et al.Isomer depletion as experimental evidence of nuclear excitation by electron capture[J].Nature, 2018, 554:216-218.
[72] Guo S, Ding B, Zhou X H, et al.Probing 93mMo isomer depletion with an isomer beam[J].Physical Review Letters, 2022, 128(24):242502.