Exclusive: Science and Technology Review in 2022

Annual review of the advances in nuclear physics

  • MA Yugang
Expand
  • 1. Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China;
    2. Shanghai Research Center for Theoretical Nuclear Physics, NSFC and Fudan University, Shanghai 200438, China

Received date: 2023-01-03

  Revised date: 2023-01-11

  Online published: 2023-02-10

Abstract

Nuclear science is a broad and diverse discipline which bridges microscopic particle physics and mesoscopic atomic/molecular physics. From the hot dense soup of quarks and gluons in the first microseconds after the Big Bang, through the nucleosynthesis, to the explosion of stars in cosmos, nuclear physics is fundamental to our understanding of the universe. At the same time, even after more than 100 years' development, the field of nuclear physics is still vigorous. Moreover, the development of nuclear science and technology has brought new opportunities and challenges to mankind. In this review, we briefly review the frontiers and advances of nuclear physics in 2022, which have provided unprecedented contributions to the fundamental science, national security, and other social applications.

Cite this article

MA Yugang . Annual review of the advances in nuclear physics[J]. Science & Technology Review, 2023 , 41(1) : 14 -29 . DOI: 10.3981/j.issn.1000-7857.2023.01.002

References

[1] Castelvecchi D.Long-awaited accelerator ready to explore origins of elements[J].Nature, 2022, 605:201.
[2] Zhou X H, Yang J C, the HIAF project team.Status of the high-intensity heavy-ion accelerator facility in China[J].AAPPS Bulletin, 2022, 32:35.
[3] Wang H W, Fan G T, Liu L X, et al.Commissioning of laser electron gamma beamline SLEGS at SSRF[J].Nuclear Science and Techniques, 2022, 33:87.
[4] Gargiulo S, Madan I, Carbone F.Nuclear excitation by electron capture in excited ions[J].Physical Review Letters, 2022, 128(21):212502.
[5] Wu Y B, Gargiulo S, Carbone F, et al.Dynamical control of nuclear isomer depletion via electron vortex beams[J].Physical Review Letters, 2022, 128(16):162501.
[6] Feng J, Wang W Z, Fu C B, et al.Femtosecond pumping of nuclear isomeric states by the Coulomb collision of ions with quivering electrons[J].Physical Review Letters, 2022, 128(5):052501.
[7] Ahn D S, Amano J, Baba H, et al.Discovery of 39Na[J].Physical Review Letters, 2022, 129(21):212502.
[8] Sommer F, Knight K, Rossi D M, et al.Charge radii of 55,56Ni reveal a surprisingly similar behavior at N=28 in Ca and Ni isotopes[J].Physical Review Letters, 2022, 129(13):132501.
[9] Crawford H L, Tripathi V, Allmond J M, et al.Crossing N=28 toward the neutron drip line:First measurement of half-lives at FRIB[J].Physical Review Letters, 2022, 129(21):212501.
[10] Wang Z A, Pei J C, Chen Y J, et al.Bayesian approach to heterogeneous data fusion of imperfect fission yields for augmented evaluations[J].Physical Review C, 2022, 106:L021304.
[11] Wei X B, Wei H L, Wang Y T, et al.Multiple-models predictions for drip line nuclides in projectile fragmentation of 40,48Ca, 58,64Ni, and 78,86Kr at 140 MeV/u[J].Nuclear Science and Techniques, 2022, 33:15.
[12] Lalanne L, Sorlin O, Poves A, et al.Structure of 36Ca under the Coulomb magnifying glass[J].Physical Review Letters, 2022, 129(12):122501.
[13] Koszorus A, Yang X F, Jiang W G, et al.Charge radii of exotic potassium isotopes challenge nuclear theory and the magic character of N=32[J].Nature Physics, 2021, 17(4):439-443.
[14] Enciu M, Liu H N, Obertelli A, et al.Extended p3/2 neutron orbital and the N=32 shell closure in 52Ca[J].Physical Review Letters, 2022, 129(26):262501.
[15] Duer M, Aumann T, Gernhäuser R, et al.Observation of a correlated free four-neutron system[J].Nature, 2022, 606:678-682.
[16] Li J G, Michel N, Hu B S, et al.Ab initio no-core Gamow shell-model calculations of multineutron systems[J].Physical Review C, 2022, 100:054313.
[17] Sobotka L G, Piarulli M.Collisions hint that four neutrons form a transient isolated entity[J].Nature, 2022, 606:656-657.
[18] Adsley P, Heine M, Jenkins D G, et al.Extending the Hoyle-state paradigm to 12C+12C fusion[J].Physical Review Letters, 2022, 129(10):102701.
[19] Hongo M, Son D T.Universal properties of weakly bound two-neutron halo nuclei[J].Physical Review Letters, 2022, 128(21):212501.
[20] Ayyad Y, Mittig W, Tang T, et al.Evidence of a nearthreshold resonance in 11B relevant to the β-delayed proton emission of 11Be[J].Physical Review Letters, 2022, 129(1):012501.
[21] Lopez-Saavedra E, Almaraz-Calderon S, Asher B W, et al.Observation of a near-threshold proton resonance in 11B[J].Physical Review Letters, 2022, 129(1):012502.
[22] Sargsyan G H, Launey K D, Burkey M T, et al.Impact of clustering on the 8Li β decay and recoil form factors[J].Physical Review Letters, 2022, 128(20):202503.
[23] Lu B N, Li N, Elhatisari S, et al.Perturbative quantum Monte Carlo method for nuclear physics[J].Physical Review Letters, 2022, 128(24):242501.
[24] Lu J X, Wang C X, Xiao Y, et al.Accurate relativistic chiral nucleon-nucleon interaction up to next-to-nextto-leading order[J].Physical Review Letters, 2022, 128(14):142002.
[25] Lü C J, Chen F Q, Sun Y, et al.ΔI=2 bifurcation as a characteristic feature of scissors rotational bands[J].Physical Review Letters, 2022, 129(4):042502.
[26] Hen O, Sargsian M, Weinstein L B, et al.Momentum sharing in imbalanced Fermi systems[J].Science, 2014, 346(6209):614.
[27] Hen O, Miller G A, Piasetzky E, et al.Nucleon-nucleon correlations, short-lived excitations, and the quarks within[J].Review of Modern Physics, 2017, 89:045002.
[28] Li S, Cruz-Torres R, Santiesteban N, et al.Revealing the short-range structure of the mirror nuclei 3H and 3He[J].Nature, 2022, 609:41.
[29] Burkey M T, Savard G, Gallant A T, et al.Improved limit on tensor currents in the weak interaction from 8Li β decay[J].Physical Review Letters, 2022, 128(20):202502.
[30] Auranen K, Briscoe A D, Ferreira L S, et al.Nanosecond-scale proton emission from strongly oblate-deformed 149Lu[J].Physical Review Letters, 2022, 128(11):112501.
[31] Hebborn C, Hupin G, Kravvaris K, et al.Gysbers, ab initio prediction of the 4He(d,γ)6Li big bang radiative capture[J].Physical Review Letters, 2022, 129(4):042503.
[32] Ren Z X, Vretenar D, Niksic T, et al.Dynamical synthesis of 4He in the scission phase of nuclear fission[J].Physical Review Letters, 2022, 128(17):172501.
[33] Yang L, Lin C J, Yamaguchi H, et al.Breakup of the proton halo nucleus 8B near barrier energies[J].Nature Communications, 2022, 13:7193.
[34] Liu J J, Xu X X, Sun L J, et al.Observation of a strongly isospin-mixed doublet in 26Si via β-delayed two-proton decay of 26P[J].Physical Review Letters, 2022, 129(24):242502.
[35] Li H F, Naimi S, Sprouse T M, et al.First application of mass measurements with the Rare-RI ring reveals the solar r-process abundance trend at A=122 and A=123[J].Physical Review Letters, 2022, 128(15):152701.
[36] Gao B, Jiao T Y, Li Y T, et al.Deep underground laboratory measurement of 13C(α, n)16O in the Gamow windows of the s and i processes[J].Physical Review Letters, 2022, 129(13):132701.
[37] Zhan L, He J, deBoer R J, et al.Measurement of 19F(p, γ) 20Ne reaction suggests CNO breakout in first stars[J].Nature, 2022, 610:656.
[38] Reinhard P G, Roca-Maza X, Nazarewicz W.Combined theoretical analysis of the parity-violating asymmetry for 48Ca and 208Pb[J].Physical Review Letters, 2022, 129(23):232501.
[39] Adhikari D, Albataineh H, Androic D, et al.New Measurements of the beam-normal single spin asymmetry in elastic electron scattering over a range of spin-0 nuclei[J].Physical Review Letters, 2022, 128(14):142501.
[40] Malbrunot-Ettenauer S, Kaufmann S, Bacca S, et al.Nuclear charge radii of the nickel isotopes 58-68,70Ni[J].Physical Review Letters, 2022, 128(2):022502.
[41] Hu B S, Jiang W G, Miyagi T, et al.Ab initio prediction link the skin of 208Pb to the nuclear forces[J].Nature Physics, 2022, 18:1196.
[42] Komoltsev O, Kurkela A.How perturbative QCD constrains the equation of state at neutron-star densities[J].Physical Review Letters, 2022, 128(20):202701.
[43] Bzdak A, Esumi S, Koch V, et al.Mapping the phases of quantum chromodynamics with beam energy scan[J].Physics Reports, 2020, 853:1.
[44] Chen J, Keane D, Ma Y G, et al.Antinuclei in heavyion collisions[J].Physics Reports, 2018, 760:1.
[45] 马余刚, 许怒, 刘峰.基于HIAF集群的QCD相结构研究[J].中国科学:物理学力学天文学, 2020, 50:112009.
[46] Liang Z T, Wang X N.Globally polarized quark-gluon plasma in non-central A+A collisions[J].Physical Review Letters, 2005, 94(10):102301.
[47] Adamczyk L, Adkins J K, Agakishiev G, et al.Global Λ hyperon polarization in nuclear collisions[J].Nature, 2017, 548:62-65.
[48] Abdallah M S, Aboona B E, Adam J, et al.Pattern of global spin alignment of φ and K*0 vector heavy-ion in nuclear collisions[J].Nature, 2023, doi:10.1038/S41586-d:PDF.pdf022-05557-5.
[49] Sheng X L, Oliva L, Wang Q.What can we learn from the global spin alignment of φ mesons in heavy-ion collisions?[J].Physical Review D, 2020, 101:096005.
[50] Sheng X L, Wang Q, Wang X N.Improved quark coalescence model for spin alignment and polarization of hadrons[J].Physical Review D, 2020, 102:056013.
[51] Acharya S, Adamova D, Adler A, et al.Direct observation of the dead-cone effect in quantum chromodynamics[J].Nature, 2022, 605:440.
[52] Tumasyan A, Adam W, Andrejkovic J W, et al.Probing charm quark dynamics via multiparticle correlations in Pb-Pb collisions at √s=5.02 TeV[J].Physical Review Letters, 2022, 129(2):022001.
[53] Acharya S, Adamová D, Adler A, et al.Measurement of prompt D0, Λc+, and Σc0,++ (2455) production in proton-proton collisions at √s=13 TeV[J].Physical Review Letters, 2022, 128(1):012001.
[54] Abdallah M S, Adam J, Adamczyk L, et al.Search for the chiral magnetic effect via charge-dependent azimuthal correlations relative to spectator and participant planes in Au+Au collisions at √s=200 GeV[J].Physical Review Letters, 2022, 128(9):092301.
[55] Abdallah M S, Aboona B E, Adam J, et al.Measurements of proton high-order cumulants in √s=3 GeV Au+Au collisions and implications for the QCD critical point[J].Physical Review Letters, 2022, 128(20):202303.
[56] Zhao W B, Ke W Y, Chen W, et al.From hydrodynamics to jet quenching, coalescence, and hadron cascade:A coupled approach to solving the RAA ⊗ v2 puzzle[J].Physical Review Letters, 2022, 128(2):022302.
[57] He M, Wu B G, Rapp R.Collectivity of J/ψ mesons in heavy-ion collisions[J].Physical Review Letters, 2022, 128(16):162301.
[58] Accardi A, Albacete J L, Anselmino M, et al.ElectronIon Collider:The next QCD frontier[J].European Physical Journal A, 2016, 52(9):268.
[59] 曹须, 常雷, 畅宁波, 等.中国极化电子离子对撞机计[J].核技术, 2020, 43(2):3-61.
[60] Gelis F, Iancu E, Jalilian-Marian J, et al.The color glass condensate[J].Annual Review of Nuclear and Particle Science, 2010, 60:463-489.
[61] Sciencesprings[EB/OL].[2023-01-01].https://sciencesprings.wordpress.com/tag/cgc-color-glass-condensate/.
[62] Shi Y, Wang L, Wei S Y, et al.Pursuing the precision study for color glass condensate in forward hadron productions[J].Physical Review Letters, 2022, 128(20):202302.
[63] Ma Y G, Zhang S.Influence of nuclear structure in relativistic heavy-ion collisions[M]//Handbook of Nuclear Physics.Singapore:Springer, 2022.
[64] Giacalone G, Jia J Y, Zhang C J.Impact of nuclear deformation on relativistic heavy-ion collisions:Assessing consistency in nuclear physics across energy scales[J].Physical Review Letters, 2021, 127(24):242301.
[65] Zhang C J, Jia J Y.Evidence of quadrupole and octupole deformations in 96Zr+96Zr and 96Ru+96Ru collisions at ultrarelativistic energies[J].Physical Review Letters, 2022, 128(2):022301.
[66] Bally B, Bender M, Giacalone G, et el.Evidence of the triaxial structure of 129Xe at the Large Hadron Collider[J].Physical Review Letters, 2022, 128(8):082301.
[67] Bally B, Brandenburg J D, Giacalone G, et al.Imaging the initial condition of heavy-ion collisions and nuclear structure across the nuclide chart[J/OL].[2022-09-22].arXiv:2209.11042.
[68] Adams D Q, Alduino C, Alfonso K, et al.Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE[J].Nature, 2022, 604:53-58.
[69] Adams D Q, Alduino1 C, Alfonso K, et al.New direct limit on neutrinoless double beta decay half-life of 128Te with CUORE[J].Physical Review Letters, 2022, 129(22):222501.
[70] Azzolini O, Beeman J W, Bellini F, et al.Final result on the neutrinoless double beta decay of 82Se with CUPID-0[J].Physical Review Letters, 2022, 129(11):111801.
[71] Chiara C J, Carroll J J, Carpenter M P, et al.Isomer depletion as experimental evidence of nuclear excitation by electron capture[J].Nature, 2018, 554:216-218.
[72] Guo S, Ding B, Zhou X H, et al.Probing 93mMo isomer depletion with an isomer beam[J].Physical Review Letters, 2022, 128(24):242502.
Outlines

/