Exclusive: Science and Technology Review in 2022

Research highlights of bioscience in the year of 2022

  • ZHU Fang ,
  • YANG Yuge ,
  • JIANG Jiayan ,
  • LI Cong ,
  • WANG Chengcheng ,
  • HU Ronggui
Expand
  • 1. Medical School, Guizhou University, Guiyang 550025, China;
    2. Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Shanghai 200032, China;
    3. Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

Received date: 2022-12-30

  Revised date: 2023-01-05

  Online published: 2023-02-10

Abstract

Through exploration, innovation and engineering, life science research is enriching our understanding of the nature both outside and inside us, with the ultimate goal to better serve and benefit mankind. In the past 2022, breakthroughs were made in the field of many areas which include viral vaccine development in response to the COVID-19 pandemic, trans-species organ transplant, crop optimization, the complete sequencing of a human genome, gene editing and therapy, and so on. Herein, we highlight a few breakthroughs that could either significantly enrich our knowledge of the problem or have the great potential to immediately transform our conditions and change our medical and social practice in the related area.

Cite this article

ZHU Fang , YANG Yuge , JIANG Jiayan , LI Cong , WANG Chengcheng , HU Ronggui . Research highlights of bioscience in the year of 2022[J]. Science & Technology Review, 2023 , 41(1) : 103 -123 . DOI: 10.3981/j.issn.1000-7857.2023.01.006

References

[1] Wu J, Nie J, Zhang L, et al.The antigenicity of SARSCoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain[J].Signal Transduction and Targeted Therapy, 2022, 7(1):18.
[2] Hadfield J, Megill C, Bell S M, et al.Nextstrain:Realtime tracking of pathogen evolution[J].Bioinformatics, 2018, 34(23):4121-4123.
[3] Berkhout B, Herrera-Carrillo E.SARS-CoV-2 evolution:On the sudden appearance of the Omicron variant[J].Journal of Virology, 2022, 96(7):e0009022.
[4] Tegally H, Moir M, Everatt J, et al.Emergence of SARSCoV-2 Omicron lineages BA.4 and BA.5 in South Africa[J].Nature Medicine, 2022, 28(9):1785-1790.
[5] Bruel T, Hadjadj J, Maes P, et al.Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies[J].Nature Medicine, 2022, 28(6):1297-1302.
[6] Garcia-Beltran W F, St Denis K J, Hoelzemer A, et al.mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant[J].Cell, 2022, 185(3):457-466.
[7] Chen J, Wang R, Gilby N B, et al.Omicron (B.1.1.529):Infectivity, vaccine breakthrough, and antibody resistance[J].Journal of Chemical Information and Modeling, 2022, 62(2):412-422.
[8] Uraki R, Kiso M, Iida S, et al.Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2[J].Nature, 2022, 607(7917):119-127.
[9] Uraki R, Halfmann P J, Iida S, et al.Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents[J].Nature, 2022, 612(7940):540-545.
[10] Nchioua R, Diofano F, Noettger S, et al.Strong attenuation of SARS-CoV-2 Omicron BA.1 and increased replication of the BA.5 subvariant in human cardiomyocytes[J].Signal Transduction and Targeted Therapy, 2022, 7(1):395.
[11] Cao Y, Jian F, Wang J, et al.Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution[J].Nature, 2022, doi:10.1038/s41586-022-d:PDF.pdf05644-7.
[12] Andrews N, Stowe J, Kirsebom F, et al.Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant[J].The New England Journal of Medicine, 2022, 386(16):1532-1546.
[13] Lu L, Mok B W Y, Chen L L, et al.Neutralization of severe acute respiratory syndrome coronavirus 2 Omicron variant by sera from BNT162b2 or coronaVac vaccine recipients[J].Clinical Infectious Diseases, 2022, 75(1):e822-e826.
[14] Zeng B, Gao L, Zhou Q, et al.Effectiveness of COVID-d:PDF.pdf19 vaccines against SARS-CoV-2 variants of concern:a systematic review and meta-analysis[J].BMC Medicine, 2022, 20(1):200.
[15] Zou L, Zhang H, Zheng Z, et al.Serosurvey in SARSCoV-2 inactivated vaccine-elicited neutralizing antibodies against authentic SARS-CoV-2 and its viral variants[J].Journal of Medical Virology, 2022, 94(12):6065-d:PDF.pdf6072.
[16] Zhang B, Huo J, Huang Y, et al.mRNA booster vaccination enhances antibody responses against SARS-CoV-2 Omicron variant in individuals primed with mRNA or inactivated virus vaccines[J].Vaccines (Basel), 2022, 10(7):1057.
[17] Cohen I R, Efroni S.The immune system computes the state of the body:Crowd wisdom, machine learning, and immune cell reference repertoires help manage inflammation[J].Frontiers in Immunology, 2019, 10:10.
[18] Shmuel K, Dalia M, Tair L, et al.Low pH Hypromellose (Taffix) nasal powder spray could reduce SARS-CoV-2 infection rate post mass-gathering event at a highly endemic community:An observational prospective open label user survey[J].Expert Review of Anti-Infective Therapy, 2021, 19(10):1325-1330.
[19] Lu J, Yin Q, Pei R, et al.Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants[J].Virologica Sinica, 2022, 37(2):238-247.
[20] Russell M W, Moldoveanu Z, Ogra P L, et al.Mucosal immunity in COVID-19:A neglected but critical aspect of SARS-CoV-2 infection[J].Frontiers in Immunology, 2020, 11:611337.
[21] Chen J, Wang P, Yuan L, et al.A live attenuated virusbased intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2[J].Science Bulletin, 2022, 67(13):1372-1387.
[22] Zhu F, Zhuang C, Chu K, et al.Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults:Randomised, double-blind, placebo-controlled, phase 1 and 2 trials[J].Lancet Respiratory Medicine, 2022, 10(8):749-760.
[23] Realegeno S, Puschnik A S, Kumar A, et al.Monkeypox virus host factor screen using haploid cells identifies essential role of GARP complex in extracellular virus formation[J].Journal of Virology, 2017, 91(11), doi:10.1128/JVI.00011-17.
[24] Alakunle E, Moens U, Nchinda G, et al.Monkeypox virus in nigeria:Infection biology, epidemiology, and evolution[J].Viruses, 2020, 12(11):1257.
[25] Kugelman J R, Johnston S C, Mulembakani P M, et al.Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo[J].Emerging Infectious Diseases, 2014, 20(2):232-239.
[26] Petersen E, Kantele A, Koopmans M, et al.Human monkeypox:Epidemiologic and clinical characteristics, diagnosis, and prevention[J].Infectious Disease Clinics of North America, 2019, 33(4):1027-1043.
[27] Petersen B W, Kabamba J, Mccollum A M, et al.Vaccinating against monkeypox in the Democratic Republic of the Congo[J].Antiviral Research, 2019, 162:171-177.
[28] Zhao H, Wang W, Zhao L, et al.The first imported case of monkeypox in the Mainland of China-Chongqing unicipality, China, September 16, 2022[J].China CDC Wkly, 2022, 4(38):853-854.
[29] Kaler J, Hussain A, Flores G, et al.Monkeypox:A comprehensive review of transmission, pathogenesis, and manifestation[J].Cureus, 2022, 14(7):e26531.
[30] Lim C K, Roberts J, Moso M, et al.Mpox diagnostics:Review of current and emerging technologies[J].Journal of Medical Virology, 2022, doi:10.1002/jmv.28429.
[31] Rizk J G, Lippi G, Henry B M, et al.Prevention and treatment of monkeypox[J].Drugs, 2022, 82(9):957-963.
[32] Pittman P R, Hahn M, Lee H S, et al.Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox[J].The New England Journal of Medicine, 2019, 381(20):1897-1908.
[33] Brown K, Leggat P A.Human monkeypox:Current state of knowledge and implications for the future[J].Tropical Medicine and Infectious Disease, 2016, 1(1):8.
[34] Hatch G J, Graham V A, Bewley K R, et al.Assessment of the protective effect of Imvamune and Acam2000 vaccines against aerosolized monkeypox virus in cynomolgus macaques[J].Journal of Virology, 2013, 87(14):7805-7815.
[35] Neilson K A, Yunis E J.Demonstration of respiratory syncytial virus in an autopsy series[J].Pediatr Pathol, 1990, 10(4):491-502.
[36] Griffiths C, Drews S J, Marchant D J.Respiratory syncytial virus:Infection, detection, and new options for prevention and treatment[J].Clinical Microbiology Reviews, 2017, 30(1):277-319.
[37] Battles M B, Mclellan J S.Respiratory syncytial virus entry and how to block it[J].Nature Reviews Microbiology, 2019, 17(4):233-245.
[38] Qiu X, Xu S, Lu Y, et al.Development of mRNA vaccines against respiratory syncytial virus (RSV)[J].Cytokine Growth Factor Reviews, 2022, 68:37-53.
[39] Huang K, Incognito L, Cheng X, et al.Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion[J].Journal of Virology, 2010, 84(16):8132-8140.
[40] Griffin M P, Yuan Y, Takas T, et al.Single-dose nirsevimab for prevention of RSV in preterm infants[J].The New England Journal of Medicine, 2020, 383(5):415-d:PDF.pdf425.
[41] Schwarz T F, Johnson C, Grigat C, et al.Three dose levels of a maternal respiratory syncytial virus vaccine candidate are well tolerated and immunogenic in a randomized trial in nonpregnant women[J].Journal of Infectious Diseases, 2022, 225(12):2067-2076.
[42] Pierantoni A, Esposito M L, Ammendola V, et al.Mucosal delivery of a vectored RSV vaccine is safe and elicits protective immunity in rodents and nonhuman primates[J].Molecular Therapy-Methods & Clinical Development, 2015, 2:15018.
[43] Cicconi P, Jones C, Sarkar E, et al.First-in-human randomized study to assess the safety and immunogenicity of an investigational respiratory syncytial virus (RSV) vaccine based on chimpanzee-adenovirus-155 viral vector-expressing RSV fusion, nucleocapsid, and antitermination viral proteins in healthy adults[J].Clinical Infectious Diseases, 2020, 70(10):2073-2081.
[44] Crank M C, Ruckwardt T J, Chen M, et al.A proof of concept for structure-based vaccine design targeting RSV in humans[J].Science, 2019, 365(6452):505-509.
[45] Hervé P L, Dhelft V, Zuniga A, et al.Epicutaneous immunization using synthetic virus-like particles efficiently boosts protective immunity to respiratory syncytial virus[J].Vaccine, 2021, 39(32):4555-4563.
[46] Aliprantis A O, Shaw C A, Griffin P, et al.A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adult[J].Human Vaccines Immunotherapeutics, 2021, 17(5):1248-1261.
[47] Díaz C, Zarco L A, Rivera D M.Highly active multiple sclerosis:An update[J].Multiple Sclerosis and Related Disorders, 2019, 30:215-224.
[48] Bjornevik K, Cortese M, Healy B C, et al.Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[J].Science, 2022, 375(6578):296-301.
[49] Lanz T V, Brewer R C, Ho P P, et al.Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM[J].Nature, 2022, 603(7900):321-327.
[50] Porrett P M, Orandi B J, Kumar V, et al.First clinicalgrade porcine kidney xenotransplant using a human decedent model[J].American Journal Transplantation, 2022, 22(4):1037-1053.
[51] Niu D, Ma X, Yuan T, et al.Porcine genome engineering for xenotransplantation[J].Advanced Drug Delivery Reviews, 2021, 168:229-245.
[52] Yue Y, Xu W, Kan Y, et al.Extensive germline genome engineering in pigs[J].Nature Biomedical Engineering, 2021, 5(2):134-143.
[53] Griffith B P, Goerlich C E, Singh A K, et al.Genetically modified porcine-to-human cardiac xenotransplantation[J].The New England Journal of Medicine, 2022, 387(1):35-44.
[54] Łopata K, Wojdas E, Nowak R, et al.Porcine endogenous retrovirus (PERV)-d:PDF.pdfmolecular structure and replication strategy in the context of retroviral infection risk of human cells[J].Frontiers Microbiology, 2018, 9:730.
[55] Niu D, Wei H J, Lin L, et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J].Science, 2017, 357(6357):1303-1307.
[56] Lee P, Chandel N S, Simon M C.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J].Nature Reviews Molecular Cell Biology, 2020, 21(5):268-283.
[57] Vrselja Z, Daniele S G, Silbereis J, et al.Restoration of brain circulation and cellular functions hours post-mortem[J].Nature, 2019, 568(7752):336-343.
[58] Andrijevic D, Vrselja Z, Lysyy T, et al.Cellular recovery after prolonged warm ischaemia of the whole body[J].Nature, 2022, 608(7922):405-412.
[59] Callaway E.Domestication:The birth of rice[J].Nature, 2014, 514(7524):58-59.
[60] Pimentel D, Cerasale D, Stanley R C, et al.Annual vs.perennial grain production[J].Agriculture Ecosystems & Environment, 2012, 161:1-9.
[61] Jungers J M, Dehaan L H, Mulla D J, et al.Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA[J].Agriculture Ecosystems & Environment, 2019, 272:63-73.
[62] Glover J D, Reganold J P, Bell L W, et al.Increased food and ecosystem security via perennial grains[J].Science, 2010, 328(5986):1638-1639.
[63] Zhang S L, Huang G F, Zhang Y J, et al.Sustained productivity and agronomic potential of perennial rice[J].Nature Sustainability, 2022, doi:10.1038/s41893-022-d:PDF.pdf00997-3.
[64] Huang G F, Qin S W, Zhang S L, et al.Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan Province of China[J].Sustainability, 2018, 10(4), doi:10.3390/su10041086.
[65] Doebley J F, Gaut B S, Smith B D.The molecular genetics of crop domestication[J].Cell, 2006, 127(7):1309-d:PDF.pdf1321.
[66] Liang Y M, Liu H J, Yan J B, et al.Natural variation in crops:Realized understanding, continuing promise[J].Annual Review of Plant Biology, 2021, 72:357-385.
[67] Woodhouse M R, Hufford M B.Parallelism and convergence in post-domestication adaptation in cereal grasses[J].Philosophical Transactions of the Royal Society BBiological Sciences, 2019, 374(1777):20180245.
[68] Chen W K, Chen L, Zhang X, et al.Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J].Science, 2022, 375(6587):1371-1372.
[69] Schwessinger B.Fundamental wheat stripe rust research in the 21st century[J].New Phytologist, 2017, 213(4):1625-1631.
[70] Chen W Q, Wellings C, Chen X M, et al.Wheat stripe (yellow) rust caused by Puccinia striiformis f.sp.tritici[J].Molecular Plant Pathology, 2014, 15(5):433-446.
[71] Zaidi S, Mukhtar M S, Mansoor S.Genome editing:Targeting susceptibility genes for plant Disease Resistance[J].Trends in Biotechnology, 2018, 36(9):898-906.
[72] Wang N, Tang C L, Fan X, et al.Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi[J].Cell, 2022, 185(16):2961-2974.
[73] Palacios-Rojas N, Mcculley L, Kaeppler M, et al.Mining maize diversity and improving its nutritional aspects within agro-food systems[J].Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4):1809-1834.
[74] Flint-Garcia S A, Bodnar A L, Scott M P.Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte[J].Theoretical and Applied Genetics, 2009, 119(6):1129-1142.
[75] Ciampitti I A, Lemaire G.From use efficiency to effective use of nitrogen:A dilemma for maize breeding improvement[J].Science of the Total Environment, 2022, 826(58):154125.
[76] Huang Y C, Wang H H, Zhu Y D, et al.THP9 enhances seed protein content and nitrogen-use efficiency in maize[J].Nature, 2022, 612:292-300.
[77] Koren S, Rhie A, Walenz B P, et al.De novo assembly of haplotype-resolved genomes with trio binning[J].Nature Biotechnology, 2018, 36(12):1174-1182.
[78] Gaudelli N M, Komor A C, Rees H A, et al.Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage[J].Nature, 2017, 551(7681):464-471.
[79] Komor A C, Kim Y B, Packer M S, et al.Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage[J].Nature, 2016, 533(7603):420-424.
[80] Thuronyi B W, Koblan L W, Levy J M, et al.Continuous evolution of base editors with expanded target compatibility and improved activity[J].Nature Biotechnology, 2019, 37(9):1070-1079.
[81] Lapinaite A, Knott G J, Palumbo C M, et al.DNA capture by a CRISPR-Cas9-guided adenine base editor[J].Science, 2020, 369(6503):566-571.
[82] Anzalone A V, Randolph P B, Davis J R, et al.Searchand-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-d:PDF.pdf157.
[83] Yarnall M T N, Ioannidi E I, Schmitt-Ulms C, et al.Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases[J].Nature Biotechnology, 2022, 11, doi:10.1038/s41587-022-01527-4.
[84] Chen P J, Liu D R.Prime editing for precise and highly versatile genome manipulation[J].Nature Reviews Genetics, 2022, 11, doi:10.1038/s41576-022-00541-1.
[85] Berry M H, Holt A, Salari A, et al.Restoration of highsensitivity and adapting vision with a cone opsin[J].Nature Communications, 2019, 10(1):1221.
[86] Nanoscope therapeutics announces FDA clearance of IND for MCO-010 gene therapy in stargardt macular degeneration patients[EB/OL].[2022-11-12].https://nanostherapeutics.com/2022/01/25/nanoscope-therapeutics-announces-fda-clearance-of-ind-for-mco-010-gene-therapy-in-stargardt-macular-degeneration-patients/.
[87] Atamyo Therapeutics reaches significant regulatory and financial milestones for ATA-100, its gene therapy to treat limb-girdle muscular dystrophy type 2I/R9[EB/OL].[2022-10-20].https://www.businesswire.com/news/home/20220224005275/en/Atamyo-Therapeutics-Reach es-Significant-Regulatory-and-Financial-Milestonesfor-ATA-100-its-Gene-Therapy-to-Treat-Limb-Gir dle-Muscular-Dystrophy-Type-2IR9.
[88] Atamyo Therapeutics announces first patient dosed with ATA-100 gene therapy in LGMD-R9 clinical trial[EB/OL].[2022-10-30].https://www.biospace.com/article/releases/atamyo-therapeutics-announces-first-patientdosed-with-ata-100-gene-therapy-in-lgmd-r9-clini cal-trial/#:~:text=Atamyo%20Therapeutics%20Announces%20First%20Patient%20Dosed%20with%20ATA-100, study% 20evaluating% 20safety% 2C% 20pharmacodynamic%20and%20efficacy%20of%20ATA-100.
[89] Weinstein D A, Hastings C A, Day-Salvatore D L, et al.Interim safety, biomarker, and efficacy data from imagine-1:A phase 1/2 open-label, multicenter study to assess the safety, tolerability, and efficacy of a single dose, ICM administration of PBGM01 in subjects with type I (Early Onset) and 10.type IIa (Late Onset) infantile GM1 gangliosidosis (GM1)[J].Molecular Therapy, 2022, 30(5):5-6.
[90] Nurk S, Koren S, Rhie A, et al.The complete sequence of a human genome[J].Science, 2022, 376(6588):44-53.
[91] Vollger M R, Guitart X, Dishuck P C, et al.Segmental duplications and their variation in a complete human genome[J].Science, 2022, 376(6588):eabj6965.
[92] Gershman A, Sauria M E G, Guitart X, et al.Epigenetic patterns in a complete human genome[J].Science, 2022, 376(6588):eabj5089.
[93] Hoyt S J, Storer J M, Hartley G A, et al.From telomere to telomere:The transcriptional and epigenetic state of human repeat elements[J].Science, 2022, 376(6588):eabk3112.
[94] Altemose N, Logsdon G A, Bzikadze A V, et al.Complete genomic and epigenetic maps of human centromeres[J].Science, 2022, 376(6588):eabl4178.
[95] Aganezov S, Yan S M, Soto D C, et al.A complete reference genome improves analysis of human genetic variation[J].Science, 2022, 376(6588):eabl3533.
[96] Wang T, Antonacci-Fulton L, Howe K, et al.The human pangenome project:A global resource to map genomic diversity[J].Nature, 2022, 604(7906):437-446.
[97] Kjær K H, Winther Pedersen M, De Sanctis B, et al.A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA[J].Nature, 2022, 612(7939):283-291.
Outlines

/