[1] Wu J, Nie J, Zhang L, et al.The antigenicity of SARSCoV-2 Delta variants aggregated 10 high-frequency mutations in RBD has not changed sufficiently to replace the current vaccine strain[J].Signal Transduction and Targeted Therapy, 2022, 7(1):18.
[2] Hadfield J, Megill C, Bell S M, et al.Nextstrain:Realtime tracking of pathogen evolution[J].Bioinformatics, 2018, 34(23):4121-4123.
[3] Berkhout B, Herrera-Carrillo E.SARS-CoV-2 evolution:On the sudden appearance of the Omicron variant[J].Journal of Virology, 2022, 96(7):e0009022.
[4] Tegally H, Moir M, Everatt J, et al.Emergence of SARSCoV-2 Omicron lineages BA.4 and BA.5 in South Africa[J].Nature Medicine, 2022, 28(9):1785-1790.
[5] Bruel T, Hadjadj J, Maes P, et al.Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies[J].Nature Medicine, 2022, 28(6):1297-1302.
[6] Garcia-Beltran W F, St Denis K J, Hoelzemer A, et al.mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant[J].Cell, 2022, 185(3):457-466.
[7] Chen J, Wang R, Gilby N B, et al.Omicron (B.1.1.529):Infectivity, vaccine breakthrough, and antibody resistance[J].Journal of Chemical Information and Modeling, 2022, 62(2):412-422.
[8] Uraki R, Kiso M, Iida S, et al.Characterization and antiviral susceptibility of SARS-CoV-2 Omicron BA.2[J].Nature, 2022, 607(7917):119-127.
[9] Uraki R, Halfmann P J, Iida S, et al.Characterization of SARS-CoV-2 Omicron BA.4 and BA.5 isolates in rodents[J].Nature, 2022, 612(7940):540-545.
[10] Nchioua R, Diofano F, Noettger S, et al.Strong attenuation of SARS-CoV-2 Omicron BA.1 and increased replication of the BA.5 subvariant in human cardiomyocytes[J].Signal Transduction and Targeted Therapy, 2022, 7(1):395.
[11] Cao Y, Jian F, Wang J, et al.Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution[J].Nature, 2022, doi:10.1038/s41586-022-d:PDF.pdf05644-7.
[12] Andrews N, Stowe J, Kirsebom F, et al.Covid-19 Vaccine Effectiveness against the Omicron (B.1.1.529) Variant[J].The New England Journal of Medicine, 2022, 386(16):1532-1546.
[13] Lu L, Mok B W Y, Chen L L, et al.Neutralization of severe acute respiratory syndrome coronavirus 2 Omicron variant by sera from BNT162b2 or coronaVac vaccine recipients[J].Clinical Infectious Diseases, 2022, 75(1):e822-e826.
[14] Zeng B, Gao L, Zhou Q, et al.Effectiveness of COVID-d:PDF.pdf19 vaccines against SARS-CoV-2 variants of concern:a systematic review and meta-analysis[J].BMC Medicine, 2022, 20(1):200.
[15] Zou L, Zhang H, Zheng Z, et al.Serosurvey in SARSCoV-2 inactivated vaccine-elicited neutralizing antibodies against authentic SARS-CoV-2 and its viral variants[J].Journal of Medical Virology, 2022, 94(12):6065-d:PDF.pdf6072.
[16] Zhang B, Huo J, Huang Y, et al.mRNA booster vaccination enhances antibody responses against SARS-CoV-2 Omicron variant in individuals primed with mRNA or inactivated virus vaccines[J].Vaccines (Basel), 2022, 10(7):1057.
[17] Cohen I R, Efroni S.The immune system computes the state of the body:Crowd wisdom, machine learning, and immune cell reference repertoires help manage inflammation[J].Frontiers in Immunology, 2019, 10:10.
[18] Shmuel K, Dalia M, Tair L, et al.Low pH Hypromellose (Taffix) nasal powder spray could reduce SARS-CoV-2 infection rate post mass-gathering event at a highly endemic community:An observational prospective open label user survey[J].Expert Review of Anti-Infective Therapy, 2021, 19(10):1325-1330.
[19] Lu J, Yin Q, Pei R, et al.Nasal delivery of broadly neutralizing antibodies protects mice from lethal challenge with SARS-CoV-2 delta and omicron variants[J].Virologica Sinica, 2022, 37(2):238-247.
[20] Russell M W, Moldoveanu Z, Ogra P L, et al.Mucosal immunity in COVID-19:A neglected but critical aspect of SARS-CoV-2 infection[J].Frontiers in Immunology, 2020, 11:611337.
[21] Chen J, Wang P, Yuan L, et al.A live attenuated virusbased intranasal COVID-19 vaccine provides rapid, prolonged, and broad protection against SARS-CoV-2[J].Science Bulletin, 2022, 67(13):1372-1387.
[22] Zhu F, Zhuang C, Chu K, et al.Safety and immunogenicity of a live-attenuated influenza virus vector-based intranasal SARS-CoV-2 vaccine in adults:Randomised, double-blind, placebo-controlled, phase 1 and 2 trials[J].Lancet Respiratory Medicine, 2022, 10(8):749-760.
[23] Realegeno S, Puschnik A S, Kumar A, et al.Monkeypox virus host factor screen using haploid cells identifies essential role of GARP complex in extracellular virus formation[J].Journal of Virology, 2017, 91(11), doi:10.1128/JVI.00011-17.
[24] Alakunle E, Moens U, Nchinda G, et al.Monkeypox virus in nigeria:Infection biology, epidemiology, and evolution[J].Viruses, 2020, 12(11):1257.
[25] Kugelman J R, Johnston S C, Mulembakani P M, et al.Genomic variability of monkeypox virus among humans, Democratic Republic of the Congo[J].Emerging Infectious Diseases, 2014, 20(2):232-239.
[26] Petersen E, Kantele A, Koopmans M, et al.Human monkeypox:Epidemiologic and clinical characteristics, diagnosis, and prevention[J].Infectious Disease Clinics of North America, 2019, 33(4):1027-1043.
[27] Petersen B W, Kabamba J, Mccollum A M, et al.Vaccinating against monkeypox in the Democratic Republic of the Congo[J].Antiviral Research, 2019, 162:171-177.
[28] Zhao H, Wang W, Zhao L, et al.The first imported case of monkeypox in the Mainland of China-Chongqing unicipality, China, September 16, 2022[J].China CDC Wkly, 2022, 4(38):853-854.
[29] Kaler J, Hussain A, Flores G, et al.Monkeypox:A comprehensive review of transmission, pathogenesis, and manifestation[J].Cureus, 2022, 14(7):e26531.
[30] Lim C K, Roberts J, Moso M, et al.Mpox diagnostics:Review of current and emerging technologies[J].Journal of Medical Virology, 2022, doi:10.1002/jmv.28429.
[31] Rizk J G, Lippi G, Henry B M, et al.Prevention and treatment of monkeypox[J].Drugs, 2022, 82(9):957-963.
[32] Pittman P R, Hahn M, Lee H S, et al.Phase 3 efficacy trial of modified vaccinia Ankara as a vaccine against smallpox[J].The New England Journal of Medicine, 2019, 381(20):1897-1908.
[33] Brown K, Leggat P A.Human monkeypox:Current state of knowledge and implications for the future[J].Tropical Medicine and Infectious Disease, 2016, 1(1):8.
[34] Hatch G J, Graham V A, Bewley K R, et al.Assessment of the protective effect of Imvamune and Acam2000 vaccines against aerosolized monkeypox virus in cynomolgus macaques[J].Journal of Virology, 2013, 87(14):7805-7815.
[35] Neilson K A, Yunis E J.Demonstration of respiratory syncytial virus in an autopsy series[J].Pediatr Pathol, 1990, 10(4):491-502.
[36] Griffiths C, Drews S J, Marchant D J.Respiratory syncytial virus:Infection, detection, and new options for prevention and treatment[J].Clinical Microbiology Reviews, 2017, 30(1):277-319.
[37] Battles M B, Mclellan J S.Respiratory syncytial virus entry and how to block it[J].Nature Reviews Microbiology, 2019, 17(4):233-245.
[38] Qiu X, Xu S, Lu Y, et al.Development of mRNA vaccines against respiratory syncytial virus (RSV)[J].Cytokine Growth Factor Reviews, 2022, 68:37-53.
[39] Huang K, Incognito L, Cheng X, et al.Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion[J].Journal of Virology, 2010, 84(16):8132-8140.
[40] Griffin M P, Yuan Y, Takas T, et al.Single-dose nirsevimab for prevention of RSV in preterm infants[J].The New England Journal of Medicine, 2020, 383(5):415-d:PDF.pdf425.
[41] Schwarz T F, Johnson C, Grigat C, et al.Three dose levels of a maternal respiratory syncytial virus vaccine candidate are well tolerated and immunogenic in a randomized trial in nonpregnant women[J].Journal of Infectious Diseases, 2022, 225(12):2067-2076.
[42] Pierantoni A, Esposito M L, Ammendola V, et al.Mucosal delivery of a vectored RSV vaccine is safe and elicits protective immunity in rodents and nonhuman primates[J].Molecular Therapy-Methods & Clinical Development, 2015, 2:15018.
[43] Cicconi P, Jones C, Sarkar E, et al.First-in-human randomized study to assess the safety and immunogenicity of an investigational respiratory syncytial virus (RSV) vaccine based on chimpanzee-adenovirus-155 viral vector-expressing RSV fusion, nucleocapsid, and antitermination viral proteins in healthy adults[J].Clinical Infectious Diseases, 2020, 70(10):2073-2081.
[44] Crank M C, Ruckwardt T J, Chen M, et al.A proof of concept for structure-based vaccine design targeting RSV in humans[J].Science, 2019, 365(6452):505-509.
[45] Hervé P L, Dhelft V, Zuniga A, et al.Epicutaneous immunization using synthetic virus-like particles efficiently boosts protective immunity to respiratory syncytial virus[J].Vaccine, 2021, 39(32):4555-4563.
[46] Aliprantis A O, Shaw C A, Griffin P, et al.A phase 1, randomized, placebo-controlled study to evaluate the safety and immunogenicity of an mRNA-based RSV prefusion F protein vaccine in healthy younger and older adult[J].Human Vaccines Immunotherapeutics, 2021, 17(5):1248-1261.
[47] Díaz C, Zarco L A, Rivera D M.Highly active multiple sclerosis:An update[J].Multiple Sclerosis and Related Disorders, 2019, 30:215-224.
[48] Bjornevik K, Cortese M, Healy B C, et al.Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[J].Science, 2022, 375(6578):296-301.
[49] Lanz T V, Brewer R C, Ho P P, et al.Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM[J].Nature, 2022, 603(7900):321-327.
[50] Porrett P M, Orandi B J, Kumar V, et al.First clinicalgrade porcine kidney xenotransplant using a human decedent model[J].American Journal Transplantation, 2022, 22(4):1037-1053.
[51] Niu D, Ma X, Yuan T, et al.Porcine genome engineering for xenotransplantation[J].Advanced Drug Delivery Reviews, 2021, 168:229-245.
[52] Yue Y, Xu W, Kan Y, et al.Extensive germline genome engineering in pigs[J].Nature Biomedical Engineering, 2021, 5(2):134-143.
[53] Griffith B P, Goerlich C E, Singh A K, et al.Genetically modified porcine-to-human cardiac xenotransplantation[J].The New England Journal of Medicine, 2022, 387(1):35-44.
[54] Łopata K, Wojdas E, Nowak R, et al.Porcine endogenous retrovirus (PERV)-d:PDF.pdfmolecular structure and replication strategy in the context of retroviral infection risk of human cells[J].Frontiers Microbiology, 2018, 9:730.
[55] Niu D, Wei H J, Lin L, et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J].Science, 2017, 357(6357):1303-1307.
[56] Lee P, Chandel N S, Simon M C.Cellular adaptation to hypoxia through hypoxia inducible factors and beyond[J].Nature Reviews Molecular Cell Biology, 2020, 21(5):268-283.
[57] Vrselja Z, Daniele S G, Silbereis J, et al.Restoration of brain circulation and cellular functions hours post-mortem[J].Nature, 2019, 568(7752):336-343.
[58] Andrijevic D, Vrselja Z, Lysyy T, et al.Cellular recovery after prolonged warm ischaemia of the whole body[J].Nature, 2022, 608(7922):405-412.
[59] Callaway E.Domestication:The birth of rice[J].Nature, 2014, 514(7524):58-59.
[60] Pimentel D, Cerasale D, Stanley R C, et al.Annual vs.perennial grain production[J].Agriculture Ecosystems & Environment, 2012, 161:1-9.
[61] Jungers J M, Dehaan L H, Mulla D J, et al.Reduced nitrate leaching in a perennial grain crop compared to maize in the Upper Midwest, USA[J].Agriculture Ecosystems & Environment, 2019, 272:63-73.
[62] Glover J D, Reganold J P, Bell L W, et al.Increased food and ecosystem security via perennial grains[J].Science, 2010, 328(5986):1638-1639.
[63] Zhang S L, Huang G F, Zhang Y J, et al.Sustained productivity and agronomic potential of perennial rice[J].Nature Sustainability, 2022, doi:10.1038/s41893-022-d:PDF.pdf00997-3.
[64] Huang G F, Qin S W, Zhang S L, et al.Performance, economics and potential impact of perennial rice PR23 relative to annual rice cultivars at multiple locations in Yunnan Province of China[J].Sustainability, 2018, 10(4), doi:10.3390/su10041086.
[65] Doebley J F, Gaut B S, Smith B D.The molecular genetics of crop domestication[J].Cell, 2006, 127(7):1309-d:PDF.pdf1321.
[66] Liang Y M, Liu H J, Yan J B, et al.Natural variation in crops:Realized understanding, continuing promise[J].Annual Review of Plant Biology, 2021, 72:357-385.
[67] Woodhouse M R, Hufford M B.Parallelism and convergence in post-domestication adaptation in cereal grasses[J].Philosophical Transactions of the Royal Society BBiological Sciences, 2019, 374(1777):20180245.
[68] Chen W K, Chen L, Zhang X, et al.Convergent selection of a WD40 protein that enhances grain yield in maize and rice[J].Science, 2022, 375(6587):1371-1372.
[69] Schwessinger B.Fundamental wheat stripe rust research in the 21st century[J].New Phytologist, 2017, 213(4):1625-1631.
[70] Chen W Q, Wellings C, Chen X M, et al.Wheat stripe (yellow) rust caused by Puccinia striiformis f.sp.tritici[J].Molecular Plant Pathology, 2014, 15(5):433-446.
[71] Zaidi S, Mukhtar M S, Mansoor S.Genome editing:Targeting susceptibility genes for plant Disease Resistance[J].Trends in Biotechnology, 2018, 36(9):898-906.
[72] Wang N, Tang C L, Fan X, et al.Inactivation of a wheat protein kinase gene confers broad-spectrum resistance to rust fungi[J].Cell, 2022, 185(16):2961-2974.
[73] Palacios-Rojas N, Mcculley L, Kaeppler M, et al.Mining maize diversity and improving its nutritional aspects within agro-food systems[J].Comprehensive Reviews in Food Science and Food Safety, 2020, 19(4):1809-1834.
[74] Flint-Garcia S A, Bodnar A L, Scott M P.Wide variability in kernel composition, seed characteristics, and zein profiles among diverse maize inbreds, landraces, and teosinte[J].Theoretical and Applied Genetics, 2009, 119(6):1129-1142.
[75] Ciampitti I A, Lemaire G.From use efficiency to effective use of nitrogen:A dilemma for maize breeding improvement[J].Science of the Total Environment, 2022, 826(58):154125.
[76] Huang Y C, Wang H H, Zhu Y D, et al.THP9 enhances seed protein content and nitrogen-use efficiency in maize[J].Nature, 2022, 612:292-300.
[77] Koren S, Rhie A, Walenz B P, et al.De novo assembly of haplotype-resolved genomes with trio binning[J].Nature Biotechnology, 2018, 36(12):1174-1182.
[78] Gaudelli N M, Komor A C, Rees H A, et al.Programmable base editing of A.T to G.C in genomic DNA without DNA cleavage[J].Nature, 2017, 551(7681):464-471.
[79] Komor A C, Kim Y B, Packer M S, et al.Programmable editing of a target base in genomic DNA without doublestranded DNA cleavage[J].Nature, 2016, 533(7603):420-424.
[80] Thuronyi B W, Koblan L W, Levy J M, et al.Continuous evolution of base editors with expanded target compatibility and improved activity[J].Nature Biotechnology, 2019, 37(9):1070-1079.
[81] Lapinaite A, Knott G J, Palumbo C M, et al.DNA capture by a CRISPR-Cas9-guided adenine base editor[J].Science, 2020, 369(6503):566-571.
[82] Anzalone A V, Randolph P B, Davis J R, et al.Searchand-replace genome editing without double-strand breaks or donor DNA[J].Nature, 2019, 576(7785):149-d:PDF.pdf157.
[83] Yarnall M T N, Ioannidi E I, Schmitt-Ulms C, et al.Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases[J].Nature Biotechnology, 2022, 11, doi:10.1038/s41587-022-01527-4.
[84] Chen P J, Liu D R.Prime editing for precise and highly versatile genome manipulation[J].Nature Reviews Genetics, 2022, 11, doi:10.1038/s41576-022-00541-1.
[85] Berry M H, Holt A, Salari A, et al.Restoration of highsensitivity and adapting vision with a cone opsin[J].Nature Communications, 2019, 10(1):1221.
[86] Nanoscope therapeutics announces FDA clearance of IND for MCO-010 gene therapy in stargardt macular degeneration patients[EB/OL].[2022-11-12].https://nanostherapeutics.com/2022/01/25/nanoscope-therapeutics-announces-fda-clearance-of-ind-for-mco-010-gene-therapy-in-stargardt-macular-degeneration-patients/.
[87] Atamyo Therapeutics reaches significant regulatory and financial milestones for ATA-100, its gene therapy to treat limb-girdle muscular dystrophy type 2I/R9[EB/OL].[2022-10-20].https://www.businesswire.com/news/home/20220224005275/en/Atamyo-Therapeutics-Reach es-Significant-Regulatory-and-Financial-Milestonesfor-ATA-100-its-Gene-Therapy-to-Treat-Limb-Gir dle-Muscular-Dystrophy-Type-2IR9.
[88] Atamyo Therapeutics announces first patient dosed with ATA-100 gene therapy in LGMD-R9 clinical trial[EB/OL].[2022-10-30].https://www.biospace.com/article/releases/atamyo-therapeutics-announces-first-patientdosed-with-ata-100-gene-therapy-in-lgmd-r9-clini cal-trial/#:~:text=Atamyo%20Therapeutics%20Announces%20First%20Patient%20Dosed%20with%20ATA-100, study% 20evaluating% 20safety% 2C% 20pharmacodynamic%20and%20efficacy%20of%20ATA-100.
[89] Weinstein D A, Hastings C A, Day-Salvatore D L, et al.Interim safety, biomarker, and efficacy data from imagine-1:A phase 1/2 open-label, multicenter study to assess the safety, tolerability, and efficacy of a single dose, ICM administration of PBGM01 in subjects with type I (Early Onset) and 10.type IIa (Late Onset) infantile GM1 gangliosidosis (GM1)[J].Molecular Therapy, 2022, 30(5):5-6.
[90] Nurk S, Koren S, Rhie A, et al.The complete sequence of a human genome[J].Science, 2022, 376(6588):44-53.
[91] Vollger M R, Guitart X, Dishuck P C, et al.Segmental duplications and their variation in a complete human genome[J].Science, 2022, 376(6588):eabj6965.
[92] Gershman A, Sauria M E G, Guitart X, et al.Epigenetic patterns in a complete human genome[J].Science, 2022, 376(6588):eabj5089.
[93] Hoyt S J, Storer J M, Hartley G A, et al.From telomere to telomere:The transcriptional and epigenetic state of human repeat elements[J].Science, 2022, 376(6588):eabk3112.
[94] Altemose N, Logsdon G A, Bzikadze A V, et al.Complete genomic and epigenetic maps of human centromeres[J].Science, 2022, 376(6588):eabl4178.
[95] Aganezov S, Yan S M, Soto D C, et al.A complete reference genome improves analysis of human genetic variation[J].Science, 2022, 376(6588):eabl3533.
[96] Wang T, Antonacci-Fulton L, Howe K, et al.The human pangenome project:A global resource to map genomic diversity[J].Nature, 2022, 604(7906):437-446.
[97] Kjær K H, Winther Pedersen M, De Sanctis B, et al.A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA[J].Nature, 2022, 612(7939):283-291.