Exclusive: Science and Technology Review in 2022

Research progress of global COVID-19 vaccines and drugs in 2022

  • LIU Lili ,
  • HUANG Yaoqing ,
  • GAO Yuehong ,
  • LU Cainv ,
  • WANG Chunli ,
  • MAO Yanyan
Expand
  • Information Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China

Received date: 2022-12-17

  Revised date: 2022-12-30

  Online published: 2023-02-10

Abstract

COVID-19 has a great impact on human life. After the outbreak of the epidemic, global scientific research institutions and pharmaceutical companies responded quickly and stepped up the research and development of vaccines and antiviral drugs. A series of therapies such as innovative mRNA vaccines, antiviral neutralizing antibodies, and small molecule antiviral drugs emerged. However, with the emergence of a variety of COVID-19 variants, the effectiveness of COVID-19 vaccines, neutralizing antibody and small molecule drugs greatly reduced, which constantly posed new challenges to the development of COVID-19 vaccines and drugs. This article reviews the research and development progress of COVID-19 vaccines and drugs based on literature and commercial database information. By Nov 2022, there had been more than 30 COVID-19 vaccines and more than 30 anti COVID-19 drugs approved or granted EUA, and many vaccines and drugs in clinical trials. China led the world in the research and development of COVID-19 vaccines and anti COVID-19 drugs.

Cite this article

LIU Lili , HUANG Yaoqing , GAO Yuehong , LU Cainv , WANG Chunli , MAO Yanyan . Research progress of global COVID-19 vaccines and drugs in 2022[J]. Science & Technology Review, 2023 , 41(1) : 136 -145 . DOI: 10.3981/j.issn.1000-7857.2023.01.009

References

[1] Our World in Data.COVID-19 data explorer[EB/OL].[2022-11-22].https://ourworldindata.org/coronavirus#explore-the-global-situation.
[2] Arya R, Kumari S, Pandey B, et al.Structural insights into SARS-CoV-2 proteins[J].Journal of Molecular Biology, 2021, 433(2):166725.
[3] Kirtipal N, Bharadwaj S, Kang S G.From SARS to SARSCoV-2, insights on structure, pathogenicity and immunity aspects of pandemic human coronaviruses[J].Infection Genetics and Evolution, 2020, 85:104502.
[4] Kadam S B, Sukhramani G S, Bishnoi P, et al.SARSCoV-2, the pandemic coronavirus:Molecular and structural insights[J].Journal of Basic Microbiology, 2021, 61(3):180-202.
[5] Giovanetti M, Benedetti F, Campisi G, et al.Evolution patterns of SARS-CoV-2:Snapshot on its genome variants[J].Biochemical and Biophysical Research Communications, 2021, 538:88-91.
[6] Zawilska J B, Lagodzinski A, Berezinska M.COVID-19:From the structure and replication cycle of SARS-CoV-2 to its disease symptoms and treatment[J].Journal of Physiology And Pharmacology, 2021, 72(4):479-501.
[7] Jackson C B, Farzan M, Chen B, et al.Mechanisms of SARS-CoV-2 entry into cells[J].Nature Reviews Molecular Cell Biology, 2022, 23(1):3-20.
[8] Yang H, Rao Z.Structural biology of SARS-CoV-2 and implications for therapeutic development[J].Nature Reviews Microbiology, 2021, 19(11):685-700.
[9] Trougakos I P, Stamatelopoulos K, Terpos E, et al.Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications[J].Journal of Biomedical Science, 2021, 28(1):9.
[10] World Health Organization.Tracking SARS-CoV-2 variants[EB/OL].[2022-11-22].https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
[11] 杨婧荣, 桓瑜, 龚玉环, 等.2021年新冠病毒变异、跨种传播及疫苗和药物研究热点回眸[J].科技导报, 2022, 40(1):132-149.
[12] Park H, Park M S, Seok J H, et al.Insights into the immune responses of SARS-CoV-2 in relation to COVID-d:PDF.pdf19 vaccines[J].Journal of Microbiology, 2022, 60(3):308-320.
[13] 石云, 王宁, 邹全明.新型冠状病毒疫苗研发进展与挑战[J].中华预防医学杂志, 2020, 54(6):614-619.
[14] Sadoff J, Gray G, Vandebosch A, et al.Safety and efficacy of single-dose Ad26.COV2.S vaccine against COVID-19[J].New England Journal of Medicine, 2021, 384(23):2187-2201.
[15] Voysey M, Costa C S A, Madhi S A, et al.Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19(AZD1222) vaccine:a pooled analysis of four randomised trials[J].Lancet, 2021, 397(10277):881-891.
[16] Jones I, Roy P.Sputnik V COVID-19 vaccine candidate appears safe and effective[J].Lancet, 2021, 397(10275):642-643.
[17] Dunkle L M, Kotloff K L, Gay C L, et al.Efficacy and safety of NVX-CoV2373 in adults in the United States and Mexico[J].New England Journal of Medicine, 2022, 386(6):531-543.
[18] Thuluva S, Paradkar V, Gunneri S, et al.Safety, tolerability and immunogenicity of Biological E's CORBEVAX TM vaccine in children and adolescents:A prospective, randomised, double-blind, placebo controlled, phase-2/3 study[J].Vaccine, 2022, 40(49):7130-7140.
[19] Song J Y, Choi W S, Heo J Y, et al.Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03:A randomised, placebo-controlled, observer-blinded phase 1/2 trial[J].EClinicalMedicine, 2022, 51:101569.
[20] Polack F P, Thomas S J, Kitchin N, et al.Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine[J].New England Journal of Medicine, 2020, 383(27):2603-d:PDF.pdf2615.
[21] Teo S P.Review of COVID-19 mRNA vaccines:BNT162b2 and mRNA-1273[J].Journal of Pharmaceutical Sciences, 2022, 35(6):947-951.
[22] Al Kaabi N, Zhang Y, Xia S, et al.Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults:A randomized clinical trial[J].Jama, 2021, 326(1):35-45.
[23] Ranzani O T, Hitchings M D T, Dorion M, et al.Effectiveness of the CoronaVac vaccine in older adults during a gamma variant associated epidemic of COVID-19 in Brazil:Test negative case-control study[J].British Medical Journal, 2021, 374:n2015.
[24] Zhu F, Jin P, Zhu T, et al.Safety and immunogenicity of a recombinant adenovirus type-5-vectored coronavirus disease 2019(COVID-19) vaccine with a homologous prime-boost regimen in healthy participants aged ≥ 6 years:A randomized, double-blind, placebo-controlled, phase 2b trial[J].Clinical Infectious Diseases, 2022, 75(1):783-791.
[25] Dai L, Gao L, Tao L, et al.Efficacy and safety of the RBD-dimer-based COVID-19 vaccine ZF2001 in adults[J].New England Journal of Medicine, 2022, 386(22):2097-2111.
[26] Andrews N, Stowe J, Kirsebom F, et al.COVID-19 vaccine effectiveness against the Omicron (B.1.1.529) variant[J].New England Journal of Medicine, 2022, 386(16):1532-1546.
[27] Tartof S Y, Slezak J M, Puzniak L, et al.BNT162b2 vaccine effectiveness against SARS-CoV-2 omicron BA.4 and BA.5[J].Lancet Infectious Diseases, 2022, 22(12):1663-1665.
[28] Scheaffer S M, Lee D, Whitener B, et al.Bivalent SARS-CoV-2 mRNA vaccines increase breadth of neutralization and protect against the BA.5 Omicron variant in mice[J].Nature Medicine, 2023, 29:247-257.
[29] Clarivate Cortellis[EB/OL].[2022-11-22].https://access.cortellis.cn.
[30] Kumar A, Blum J, Thanh Le T, et al.The mRNA vaccine development landscape for infectious diseases[J].Nature Reviews Drug Discovery, 2022, 21(5):333-334.
[31] Ying B, Scheaffer S M, Whitener B, et al.Boosting with variant-matched or historical mRNA vaccines protects against Omicron infection in mice[J].Cell, 2022, 185(9):1572-1587.
[32] Kurhade C, Zou J, Xia H, et al.Neutralization of Omicron BA.1, BA.2, and BA.3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine[J].Nature Communications, 2022, 13(1):3602.
[33] Chen G L, Li X F, Dai X H, et al.Safety and immunogenicity of the SARS-CoV-2 ARCoV mRNA vaccine in Chinese adults:A randomised, double-blind, placebocontrolled, phase 1 trial[J].Lancet Microbe, 2022, 3(3):193-202.
[34] Tan Y, Lu S, Wang B, et al.Single-cell transcriptome atlas reveals protective characteristics of COVID-19 mRNA vaccine[J].Journal of Medical Virology, doi:10.1002/jmv.28161.
[35] Pardi N, Hogan M J, Weissman D.Recent advances in mRNA vaccine technology[J].Current Opinion In Immunology, 2020, 65:14-20.
[36] Chaudhary N, Weissman D, Whitehead K A.mRNA vaccines for infectious diseases:Principles, delivery and clinical translation[J].Nature Reviews Drug Discovery, 2021, 20(11):817-838.
[37] Joyce M G, King H A D, Elakhal-Naouar I, et al.A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in nonhuman primates[J].Science Translational Medicine, 2022, 14(632):eabi5735.
[38] Morens D M, Taubenberger J K, Fauci A S.Universal coronavirus vaccines-an urgent need[J].New England Journal of Medicine, 2022, 386(4):297-299.
[39] Faheem, Kumar B K, Sekhar K, et al.Druggable targets of SARS-CoV-2 and treatment opportunities for COVID-19[J].Bioorganic Chemistry, 2020, 104:104269.
[40] Liu X, Huuskonen S, Laitinen T, et al.SARS-CoV-2-d:PDF.pdfhost proteome interactions for antiviral drug discovery[J].Molecular Systems Biology, 2021, 17(11):e10396.
[41] Xiang R, Wang Y, Wang L, et al.Neutralizing monoclonal antibodies against highly pathogenic coronaviruses[J].Current Opinion In Virology, 2022, 53:101199.
[42] Hurt A C, Wheatley A K.Neutralizing antibody therapeutics for COVID-19[J].Viruses, 2021, 13(4):628.
[43] Barnes C O, Jette C A, Abernathy M E, et al.SARSCoV-2 neutralizing antibody structures inform therapeutic strategies[J].Nature, 2020, 588(7839):682-687.
[44] Xiaojie S, Yu L, Lei Y, et al.Neutralizing antibodies targeting SARS-CoV-2 spike protein[J].Stem Cell Research, 2020, 50:102125.
[45] Dougan M, Nirula A, Azizad M, et al.Bamlanivimab plus etesevimab in mild or moderate COVID-19[J].New England Journal of Medicine, 2021, 385(15):1382-d:PDF.pdf1392.
[46] Ganesh R, Philpot L M, Bierle D M, et al.Real-world clinical outcomes of bamlanivimab and casirivimab-imdevimab among high-risk patients with mild to moderate coronavirus disease 2019[J].Journal of Infectious Diseases, 2021, 224(8):1278-1286.
[47] Gupta A, Gonzalez-Rojas Y, Juarez E, et al.Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab[J].New England Journal of Medicine, 2021, 385(21):1941-1950.
[48] Ji Y, Zhang Q, Cheng L, et al.Preclinical characterization of amubarvimab and romlusevimab, a pair of noncompeting neutralizing monoclonal antibody cocktail, against SARS-CoV-2[J].Frontiers in Immunology, 2022, 13:980435.
[49] Westendorf K, Žentelis S, Wang L, et al.LY-CoV1404(bebtelovimab) potently neutralizes SARS-CoV-2 variants[J].bioRxiv, 2022, 39(7):110812.
[50] Cao Y, Wang J, Jian F, et al.Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies[J].Nature, 2022, 602(7898):657-663.
[51] Schmidt F, Muecksch F, Weisblum Y, et al.Plasma neutralization of the SARS-CoV-2 Omicron variant[J].New England Journal of Medicine, 2022, 386(6):599-601.
[52] Yuan M, Zhu X, He W T, et al.A broad and potent neutralization epitope in SARS-related coronaviruses[J].Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(29):e2205784119.
[53] Sang L, Cheng B, Yu Y, et al.The efficacy and safety of IBI314 on delta and omicron variant of SARS-CoV-2:First-in-human evidence[J].Journal of Infection, 2022, 85(3):334-363.
[54] McCreary E K, Angus D C.Efficacy of remdesivir in COVID-19[J].JAMA, 2020, 324(11):1041-1042.
[55] Najjar-Debbiny R, Gronich N, Weber G, et al.Effectiveness of Paxlovid in reducing severe COVID-19 and Mortality in high risk patients[J].Clinical Infectious Diseases, 2022, doi:10.1093/cid/ciac443.
[56] Mahase E.COVID-19:Molnupiravir reduces risk of hospital admission or death by 50% in patients at risk, MSD reports[J].British Medical Journal, 2021, 375:2422.
[57] Mukae H, Yotsuyanagi H, Ohmagari N, et al.A randomized phase 2/3 study of ensitrelvir, a novel oral SARSCoV-23C-like protease inhibitor, in Japanese patients with mild-to-moderate COVID-19 or asymptomatic SARS-CoV-2 infection:Results of the phase 2a part[J].Antimicrob Agents Chemother, 2022, 66(10):e0069722.
[58] McCoy J, Goren A, Cadegiani F A, et al.Proxalutamide reduces the rate of hospitalization for COVID-19 male outpatients:A Randomized double-blinded placebo-controlled trial[J].Frontiers of Medicine (Lausanne), 2021, 8:668698.
[59] Shen Y, Ai J, Lin N, et al.An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants[J].Emerging Microbes & Infections, 2022, 11(1):1518-1523.
[60] Ren Z, Luo H, Yu Z, et al.A randomized, open-label, controlled clinical trial of azvudine tablets in the treatment of mild and common COVID-19, a pilot study[J].Advanced Science (Weinh), 2020, 7(19):e2001435.
Outlines

/