[1] Li Z, Fan Q, Yin Y.Colloidal self-assembly approaches to smart nanostructured materials[J].Chemical Reviews, 2022, 122(5):4976-5067.
[2] Cui Y, Zhu H, Cai J, et al.Self-regulated co-assembly of soft and hard nanoparticles[J].Nature Communication, 2021, 12(1):5682.
[3] Rao A, Roy S, Jain V, et al.Nanoparticle self-assembly:From design principles to complex matter to functional materials[J].ACS Applied Materials & Interfaces, 2022, doi:10.1021/acsami.2c05378.
[4] Dijkstra M, Luijten E.From predictive modelling to machine learning and reverse engineering of colloidal selfassembly[J].Nature Materials, 2021, 20(6):762-773.
[5] Lv J, Gao X, Han B, et al.Self-assembled inorganic chiral superstructures[J].Nature Reviews Chemistry, 2022, 6(2):125-145.
[6] Lee S, Sim K, Moon S Y, et al.Controlled assembly of plasmonic nanoparticles:From static to dynamic nanostructures[J].Advanced Materials, 2021, 33(46):e2007668.
[7] Grzelczak M, Vermant J, Furst E M, et al.Directed selfassembly of nanoparticles[J].ACS Nano, 2010, 4(7):3591-3605.
[8] Zhang N N, Shen X, Liu K, et al.Polymer-tethered nanoparticles:From surface engineering to directional self-assembly[J].Accounts of Chemical Research, 2022, 55(11):1503-1513.
[9] Bian T, Gardin A, Gemen J, et al.Electrostatic co-assembly of nanoparticles with oppositely charged small molecules into static and dynamic superstructures[J].Nature Chemistry, 2021, 13(10):940-949.
[10] Nakagawa F, Saruyama M, Takahata R, et al.In situ control of crystallinity of 3D colloidal crystals by tuning the growth kinetics of nanoparticle building blocks[J].Journal of the American Chemical Society, 2022, 144(13):5871-5877.
[11] Li Z, Qian C, Xu W, et al.Coupling morphological and magnetic anisotropy for assembling tetragonal colloidal crystals[J].Science Advances, 2021, 7(37):eabh1289.
[12] Wang Y, Li H, Chu J, et al.Site-selective assembly of centimeter-scale arrays of precisely oriented magnetic nanoellipsoids[J].ACS Nano, 2022, doi:10.1021/acsnano.2c09187.
[13] Huang C H, Louis B, Bresoli-Obach R, et al.The primeval optical evolving matter by optical binding inside and outside the photon beam[J].Nature Communication, 2022, 13(1):5325.
[14] Knappe G A, Wamhoff E-C, Bathe M.Functionalizing DNA origami to investigate and interact with biological systems[J].Nature Reviews Materials, 2022, doi:10.1038/s41578-022-00517-x.
[15] Cheng H F, Distler M E, Lee B, et al.Nanoparticle superlattices through template-encoded DNA dendrimers[J].Journal of the American Chemical Society, 2021, 143(41):17170-17179.
[16] Li K, Li H, Guo D, et al.3D optical heterostructure patterning by spatially allocating nanoblocks on a printed matrix[J].ACS Nano, 2022, 16(9):14838-14848.
[17] Wang C, Lin X, Schäfer C G, et al.Spray synthesis of photonic crystal based automotive coatings with bright and angular-dependent structural colors[J].Advanced Functional Materials, 2020, 31(9):2008601.
[18] Li X, Chen L, Ma Y, et al.Ultrafast fabrication of largearea colloidal crystal micropatterns via self-assembly and transfer printing[J].Advanced Functional Materials, 2022, 32(45):2205462.
[19] Xing C, Liu D, Chen J, et al.Convective self-assembly of 2D nonclose-packed binary Au nanoparticle arrays with tunable optical properties[J].Chemistry of Materials, 2021, 33(1):310-319.
[20] Ye S S, Zha H N, Xia Y F, et al.Centimeter-scale superlattices of three-dimensionally orientated plasmonic dimers with highly tunable collective properties[J].ACS Nano, 2022, 16(3):4609.
[21] Guo D, Ruan J, Xu Y, et al.Embossed template induced particles assembly for heterostructures and the application in high-security encryption[J].Advanced Functional Materials, 2022, doi:10.1002/adfm.202210952.
[22] Chakraborty I, Pearce D J G, Verweij R W, et al.Selfassembly dynamics of reconfigurable colloidal molecules[J].ACS Nano, 2022, 16(2):2471-2480.
[23] Zhang Z, Zhao M, Su M, et al.Self-assembled 1D nanostructures for direct nanoscale detection and biosensing[J].Matter, 2022, 5(6):1865-1876.
[24] McMullen A, Munoz Basagoiti M, Zeravcic Z, et al.Selfassembly of emulsion droplets through programmable folding[J].Nature, 2022, 610:502-506.
[25] Zhou S, Li J H, Lu J, et al.Chiral assemblies of pinwheel superlattices on substrates[J].Nature, 2022, 612(7939):259.
[26] Fu Q, Yu W, Bao G, et al.Electrically responsive photonic crystals with bistable states for low-power electrophoretic color displays[J].Nature Communication, 2022, 13(1):7007.
[27] Zhang Y, Zhang L, Zhang C, et al.Continuous resin refilling and hydrogen bond synergistically assisted 3D structural color printing[J].Nature Communication, 2022, 13(1):7095.
[28] Dai S, Li W, Xu R, et al.Label-free fluorescence quantitative detection platform on plasmonic silica photonic crystal microsphere array[J].Analytical Chemistry, 2022, doi:10.1021/acs.analchem.2c04000.
[29] Meng D, Hao C, Cai J, et al.Tailored chiral copper selenide nanochannels for ultrasensitive enantioselective recognition and detection[J].Angewandte Chemie International Edition, 2021, 60(47):24997-25004.
[30] Guo Y, Zhu J, Kou D, et al.Plasmonic local electric field-enhanced interface toward high-efficiency Cu(2) ZnSn(S,Se)(4) thin-film solar cells[J].ACS Applied Materials & Interfaces, 2022, doi:10.1021/acsami.2c04027.
[31] Daem N, Mayer A, Spronck G, et al.Inverse opal photonic nanostructures for enhanced light harvesting in CH 3NH3PbI3 perovskite solar cells[J].ACS Applied Nano Materials, 2022, 5(9):13583-13593.
[32] Cao Z, Li D, Zhao L, et al.Bioorthogonal in situ assembly of nanomedicines as drug depots for extracellular drug delivery[J].Nature Communication, 2022, 13(1):2038.
[33] Wong C K, Chen F, Walther A, et al.Bioactive patchy nanoparticles with compartmentalized cargoes for simultaneous and trackable delivery[J].Angewandte Chemie International Edition, 2019, 58(22):7335-7340.
[34] Liu Y, Yang Z, Huang X, et al.Glutathione-responsive self-assembled magnetic gold nanowreath for enhanced tumor imaging and imaging-guided photothermal therapy[J].ACS Nano, 2018, 12(8):8129-8137.
[35] Wang J, Li J, Li M, et al.Nanolab in a cell:Crystallization-induced in situ self-assembly for cancer theranostic amplification[J].Journal of the American Chemical Society, 2022, 144(31):14388-14395.