Exclusive: Science and Technology Review in 2022

Clean energy in 2022: A research hotspot

  • LI Cunpu ,
  • ZHANG Jingru ,
  • ZHANG Yue ,
  • WEI Zidong
Expand
  • 1. Chongqing University, School of Chemistry and Chemical Engineering, Chongqing 400044, China;
    2. Suining Lithium Battery Research Institute of Chongqing University (SLiBaC), Suining 629000, China

Received date: 2022-12-23

  Revised date: 2023-01-04

  Online published: 2023-02-10

Abstract

In 2022, clean energy technologies were in full swing with a series of groundbreaking achievements. Technologies such as small molecule oxidation for hydrogen production and electrochemical reduction of CO2 opened up new paths for "liquid sunshine", and new breakthroughs were sought in the field of batteries to achieve industrialization goals. The limitations of "liquid sunshine", thin-film solar cell, fuel cell, lithium battery and biomass energy as well as the pleasantly surprising research progress are reviewed in this paper.

Cite this article

LI Cunpu , ZHANG Jingru , ZHANG Yue , WEI Zidong . Clean energy in 2022: A research hotspot[J]. Science & Technology Review, 2023 , 41(1) : 159 -172 . DOI: 10.3981/j.issn.1000-7857.2023.01.011

References

[1] 千吨级"液态阳光" 合成项目示范成功-2020年[EB/OL].(2021-01-08)[2022-12-23].https://www.cas.cn/cg/cgzhld/202101/t20210112_4774334.shtml.
[2] Zhai S, Jiang S, Liu C, et al.Liquid sunshine:Formic acid[J].Journal of Physical Chemistry Letters, 2022, 13(36):8586-8600.
[3] Zhou B, Gao R, Zou J J, et al.Surface design strategy of catalysts for water electrolysis[J].Small, 2022, 18(27):e2202336.
[4] Wang T, Cao X, Jiao L.Progress in hydrogen production coupled with electrochemical oxidation of small molecules[J].Angewandte Chemie International Edition, 2022:e202213328.
[5] Zhu P, Shen Y, Dai L, et al.Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting[J].ACS Applied Materials & Interfaces, 2022, 14(1):1452-1459.
[6] Fu G, Kang X, Zhang Y, et al.Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol Co-electrocatalysis[J].NanoMicro Letters, 2022, doi:10.1007/s40820-022-00940-3.
[7] Zhang J C, Song X D, Kang L Q, et al.Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions[J].Chem Catalysis, 2022, 2(11):3254-3270.
[8] Tian W J, Zhang X, Wang Z Q, et al.Amorphization activated RhPb nanflowers for energy-saving hydrogen production by hydrazine-assisted water electrolysis[J].Chemical Engineering Journal, 2022, doi:10.1016/j.cej.2022.135848.
[9] Sun F, Tang Q, Jiang D E.Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction[J].ACS Catalysis, 2022, 12(14):8404-8433.
[10] Wang L G, Wang D S, Li Y D.Single-atom catalysis for carbon neutrality[J].Carbon Energy, 2022, 4(6):1021-1079.
[11] Chen Q, Liu K, Zhou Y, et al.Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution[J].Nano Letters, 2022, 22(15):6276-6284.
[12] Zhang Y, Lan J, Xie F, et al.Aligned InS nanorods for efficient electrocatalytic carbon dioxide reduction[J].ACS Applied Materials & Interfaces, 2022, 14(22):25257-25266.
[13] Li P, Bi J, Liu J, et al.In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts[J].Nature Communications, 2022, doi:10.1038/s41467-022-29698-3.
[14] Zang Y, Liu T, Wei P, et al.Selective CO2 Electroreduction to Ethanol over a Carbon-Coated CuO x Catalyst[J].Angewandte Chemie International Edition, 2022, 61(40):e202209629.
[15] Chu S L, Kang C W, Park W, et al.Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4[J].SmartMat, 2022, 3(1):194-205.
[16] Xu L, Ma X D, Wu L M, et al.In situ periodic regeneration of catalyst during CO2 electroreduction to C2+ products[J].Angewandte Chemie International Edition, 2022, 61:e202210375.
[17] Zhao Z F, Zheng D, Guo M L, et al.Engineering olefinlinked covalent organic frameworks for photoenzymatic reduction of CO 2[J].Angewandte Chemie International Edition, 2022, 61:e202200261.
[18] Guo M Y, Gu F J, Meng L D, et al.Synthesis of formaldehyde from CO2 catalyzed by the coupled photo-enzyme system[J].Separation and Purification Technology, 2022, doi:10.1016/j.seppur.2022.120480.
[19] Fu X B, Zhang J H, Kang Y J.Recent advances and challenges of electrochemical ammonia synthesis[J].Chem Catalysis, 2022, 2(10):2590-2613.
[20] Li S, Zhou Y, Li K, et al.Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase[J].Joule, 2022, 6(9):2083-2101.
[21] Chen G F, Savateev A, Song Z, et al.Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C-N coupling reactions[J].Angewandte Chemie International Edition, 2022, 61(27):e202203170.
[22] He Y, Shen Z t, Yue G t, et al.A dye-sensitized solar cells with enhanced efficiency based on a "pillared effect" of CoMoP 2@Mxene@CNTs composite counter electrode[J].Journal of Alloys and Compounds, 2022, doi:10.1016/j.jallcom.2022.166279.
[23] Gao M, Shen Z T, Liu X S, et al.Tungsten phosphide microsheets in-situ grown on carbon fiber as counter electrode catalyst for efficient dye-sensitized solar cells[J].Advanced Materials Interfaces, 2022, doi:10.1002/admi.202201494.
[24] Zhang C Y, Li J, Ji L, et al.A meta-alkylthio-phenyl chain-substituted small-molecule donor as the third component for high-efficiency organic solar cells[J].Journal of Materials Chemistry A, 2022, 10(42):22812-22818.
[25] Gao J, Yu N, Chen Z, et al.Over 19.2% Efficiency of organic solar cells enabled by precisely tuning the charge transfer state via donor alloy strategy[J].Advanced Science, 2022, 9(30):e2203606.
[26] Yu G, Jiang K J, Gu W M, et al.Vacuum-assisted thermal annealing of CsPbI3 for highly stable and efficient inorganic perovskite solar cells[J].Angewandte Chemie International Edition, 2022, 61(27):e202203778.
[27] Zhao X, Liu T, Burlingame Q C, et al.Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells[J].Science, 2022, 377(6603):307-310.
[28] Zhu H, Ma J J, Li P W, et al.Low-dimensional Snbased perovskites:Evolution and future prospects of solar cells[J].Chem, 2022, 8(11):2939-2960.
[29] Deng Y Y, Ren G H, Han D, et al.Recent advances in Pb-Sn mixed perovskite solar cells[J].Journal of Energy Chemistry, 2022, 73:615-638.
[30] Cheng H, Xia J, Wang M, et al.Surface anion promotes Pt electrocatalysts with high CO tolerance in fuel-cell performance[J].Journal of the American Chemical Society, 2022, 144(48):22018-22025.
[31] Yang Z, Chen C, Zhao Y, et al.Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction[J].Advanced materials, 2022:e2208799.
[32] Yang Y, Gao F Y, Zhang X L, et al.Suppressing electron back-donation for a highly CO-tolerant fuel cell anode catalyst via cobalt modulation[J].Angewandte Chemie International Edition, 2022, 61(42):e202208040.
[33] Zhang X J, Li Z Q, Sun X P, et al.Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis[J].ACS Materials Letters, 2022, 4(11):2097-2105.
[34] Han S M, Ma Y, Yun Q B, et al.The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation[J].Advanced Functional Materials, 2022, 32(48):2208760.
[35] Qiao M, Meng F Y, Wu H, et al.PtCuRu nanoflowers with Ru-rich edge for efficient fuel-cell electrocatalysis[J].Small, 2022, 18(48):e2204720.
[36] Zhang Y, Liu X, Liu T, et al.Rhombohedral Pd-Sb nanoplates with Pd-terminated surface:An efficient bifunctional fuel-cell catalyst[J].Advanced Materials, 2022, 34(31):e2202333.
[37] Xu M, Dou H, Zhang Z, et al.Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries[J].Angewandte Chemie International Edition, 2022, 61(23):e202117703.
[38] Dou H, Xu M, Zheng Y, et al.Bioinspired tough solidstate electrolyte for flexible ultralong-life zinc-air battery[J].Advanced Materials, 2022, 34(18):e2110585.
[39] Zhang Y D, Liu J D, Xu W C, et al.Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries[J].Journal of Power Sources, 2022, doi:10.1016/j.jpowsour.2022.231445.
[40] Li F, Fan K, Tian Y H, et al.General flux-free synthesis of single crystal Ni-rich layered cathodes by employing a Li-containing spinel transition phase for lithiumion batteries[J].Journal of Materials Chemistry A, 2022, 10(31):16420-16429.
[41] Huang C, Xia X, Chi Z, et al.Preparation of single-crystal ternary cathode materials via recycling spent cathodes for high performance lithium-ion batteries[J].Nanoscale, 2022, 14(27):9724-9735.
[42] Chen X Q, Yang C F, Yang Y B, et al.Co-precipitation preparation of Ni-Co-Mn ternary cathode materials by using the sources extracting directly from spent lithiumion batteries[J].Journal of Alloys and Compounds, 2022, doi:10.1016/j.jallcom.2022.164691.
[43] Zheng T, Cui X, Chu Y, et al.Ultrahigh elastic polymer electrolytes for solid-state lithium batteries with robust interfaces[J].ACS Applied Materials & Interfaces, 2022, 14(4):5932-5939.
[44] Zhang J M, Zeng Y P, Li Q P, et al.Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries[J].Energy Storage Materials, 2023, 54:440-449.
[45] Cheng D M, Sun C, Lang Z L, et al.Hybrid covalent organic-framework-based electrolytes for optimizing interface resistance in solid-state lithium-ion batteries[J].Cell Reports Physical Science, 2022, 3(3):100731.
[46] Wang Z, Li Y, Ji H, et al.Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J].Advanced Materials, 2022, 34(47):e2203699.
[47] Wang Z Y, Ge H L, Liu S, et al.High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J].Energy & Environmental Materials, 2022, doi:10.1002/eem2.12358.
[48] Tan Z L, Liu S, Zhang X, et al.Few-layered V2C MXene derived 3D V3S4 nanocrystal functionalized carbon flakes boosting polysulfide adsorption and catalytic conversion towards Li-S batteries[J].Journal of Materials Chemistry A, 2022, 10(36):18679-18689.
[49] Xu R, Tang H, Zhou Y, et al.Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries[J].Chemical Science, 2022, 13(21):6224-6232.
[50] Tong C, Chen H, Jiang S, et al.Suppress loss of polysulfides in lithium-sulfur battery by regulating the rate-determining step via 1T MoS2-MnO2 covering layer[J].ACS Applied Materials & Interfaces, 2022, doi:10.1021/acsami.2c18594.
[51] Li X X, Ding Y M, Pan X L, et al.Scission of C-O and C-C linkages in lignin over RuRe alloy catalyst[J].Journal of Energy Chemistry, 2022, 67:492-499.
[52] Jiang L, Xu G Y, Fu Y.Catalytic cleavage of the C-O bond in lignin and lignin-derived aryl ethers over Ni/AlPyOx catalysts[J].ACS Catalysis, 2022, 12(15):9473-9485.
[53] Liu F, Wang Q, Zhai G, et al.Continuously processing waste lignin into high-value carbon nanotube fibers[J].Nature Communications, 2022, doi:10.1038/s41467-022-33496-2.
[54] Sun Y, Wang T, Han C, et al.One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and congo red:Performance and practical application[J].Bioresource Technology, 2022, 369(8):128373.
[55] Guan W X, Chen X, Tsang C W, et al.Highly dispersed Rh/NbO x invoking high catalytic performances for the valorization of lignin monophenols and lignin oil into aromatics[J].ACS Sustainable Chemistry & Engineering, 2021, 9(9):3529-3541.
[56] Chen B, He C Z, Cao M F, et al.Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions[J].Green Chemistry, 2022, 24(2):846-857.
Outlines

/