[1] 千吨级"液态阳光" 合成项目示范成功-2020年[EB/OL].(2021-01-08)[2022-12-23].https://www.cas.cn/cg/cgzhld/202101/t20210112_4774334.shtml.
[2] Zhai S, Jiang S, Liu C, et al.Liquid sunshine:Formic acid[J].Journal of Physical Chemistry Letters, 2022, 13(36):8586-8600.
[3] Zhou B, Gao R, Zou J J, et al.Surface design strategy of catalysts for water electrolysis[J].Small, 2022, 18(27):e2202336.
[4] Wang T, Cao X, Jiao L.Progress in hydrogen production coupled with electrochemical oxidation of small molecules[J].Angewandte Chemie International Edition, 2022:e202213328.
[5] Zhu P, Shen Y, Dai L, et al.Accelerating anode reaction with electro-oxidation of alcohols over Ru nanoparticles to reduce the potential for water splitting[J].ACS Applied Materials & Interfaces, 2022, 14(1):1452-1459.
[6] Fu G, Kang X, Zhang Y, et al.Coordination effect-promoted durable Ni(OH)2 for energy-saving hydrogen evolution from water/methanol Co-electrocatalysis[J].NanoMicro Letters, 2022, doi:10.1007/s40820-022-00940-3.
[7] Zhang J C, Song X D, Kang L Q, et al.Stabilizing efficient structures of superwetting electrocatalysts for enhanced urea oxidation reactions[J].Chem Catalysis, 2022, 2(11):3254-3270.
[8] Tian W J, Zhang X, Wang Z Q, et al.Amorphization activated RhPb nanflowers for energy-saving hydrogen production by hydrazine-assisted water electrolysis[J].Chemical Engineering Journal, 2022, doi:10.1016/j.cej.2022.135848.
[9] Sun F, Tang Q, Jiang D E.Theoretical advances in understanding and designing the active sites for hydrogen evolution reaction[J].ACS Catalysis, 2022, 12(14):8404-8433.
[10] Wang L G, Wang D S, Li Y D.Single-atom catalysis for carbon neutrality[J].Carbon Energy, 2022, 4(6):1021-1079.
[11] Chen Q, Liu K, Zhou Y, et al.Ordered Ag nanoneedle arrays with enhanced electrocatalytic CO2 reduction via structure-induced inhibition of hydrogen evolution[J].Nano Letters, 2022, 22(15):6276-6284.
[12] Zhang Y, Lan J, Xie F, et al.Aligned InS nanorods for efficient electrocatalytic carbon dioxide reduction[J].ACS Applied Materials & Interfaces, 2022, 14(22):25257-25266.
[13] Li P, Bi J, Liu J, et al.In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts[J].Nature Communications, 2022, doi:10.1038/s41467-022-29698-3.
[14] Zang Y, Liu T, Wei P, et al.Selective CO2 Electroreduction to Ethanol over a Carbon-Coated CuO x Catalyst[J].Angewandte Chemie International Edition, 2022, 61(40):e202209629.
[15] Chu S L, Kang C W, Park W, et al.Single atom and defect engineering of CuO for efficient electrochemical reduction of CO2 to C2H4[J].SmartMat, 2022, 3(1):194-205.
[16] Xu L, Ma X D, Wu L M, et al.In situ periodic regeneration of catalyst during CO2 electroreduction to C2+ products[J].Angewandte Chemie International Edition, 2022, 61:e202210375.
[17] Zhao Z F, Zheng D, Guo M L, et al.Engineering olefinlinked covalent organic frameworks for photoenzymatic reduction of CO 2[J].Angewandte Chemie International Edition, 2022, 61:e202200261.
[18] Guo M Y, Gu F J, Meng L D, et al.Synthesis of formaldehyde from CO2 catalyzed by the coupled photo-enzyme system[J].Separation and Purification Technology, 2022, doi:10.1016/j.seppur.2022.120480.
[19] Fu X B, Zhang J H, Kang Y J.Recent advances and challenges of electrochemical ammonia synthesis[J].Chem Catalysis, 2022, 2(10):2590-2613.
[20] Li S, Zhou Y, Li K, et al.Electrosynthesis of ammonia with high selectivity and high rates via engineering of the solid-electrolyte interphase[J].Joule, 2022, 6(9):2083-2101.
[21] Chen G F, Savateev A, Song Z, et al.Saving the energy loss in lithium-mediated nitrogen fixation by using a highly reactive Li3N intermediate for C-N coupling reactions[J].Angewandte Chemie International Edition, 2022, 61(27):e202203170.
[22] He Y, Shen Z t, Yue G t, et al.A dye-sensitized solar cells with enhanced efficiency based on a "pillared effect" of CoMoP 2@Mxene@CNTs composite counter electrode[J].Journal of Alloys and Compounds, 2022, doi:10.1016/j.jallcom.2022.166279.
[23] Gao M, Shen Z T, Liu X S, et al.Tungsten phosphide microsheets in-situ grown on carbon fiber as counter electrode catalyst for efficient dye-sensitized solar cells[J].Advanced Materials Interfaces, 2022, doi:10.1002/admi.202201494.
[24] Zhang C Y, Li J, Ji L, et al.A meta-alkylthio-phenyl chain-substituted small-molecule donor as the third component for high-efficiency organic solar cells[J].Journal of Materials Chemistry A, 2022, 10(42):22812-22818.
[25] Gao J, Yu N, Chen Z, et al.Over 19.2% Efficiency of organic solar cells enabled by precisely tuning the charge transfer state via donor alloy strategy[J].Advanced Science, 2022, 9(30):e2203606.
[26] Yu G, Jiang K J, Gu W M, et al.Vacuum-assisted thermal annealing of CsPbI3 for highly stable and efficient inorganic perovskite solar cells[J].Angewandte Chemie International Edition, 2022, 61(27):e202203778.
[27] Zhao X, Liu T, Burlingame Q C, et al.Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells[J].Science, 2022, 377(6603):307-310.
[28] Zhu H, Ma J J, Li P W, et al.Low-dimensional Snbased perovskites:Evolution and future prospects of solar cells[J].Chem, 2022, 8(11):2939-2960.
[29] Deng Y Y, Ren G H, Han D, et al.Recent advances in Pb-Sn mixed perovskite solar cells[J].Journal of Energy Chemistry, 2022, 73:615-638.
[30] Cheng H, Xia J, Wang M, et al.Surface anion promotes Pt electrocatalysts with high CO tolerance in fuel-cell performance[J].Journal of the American Chemical Society, 2022, 144(48):22018-22025.
[31] Yang Z, Chen C, Zhao Y, et al.Pt single atoms on CrN nanoparticles deliver outstanding activity and CO tolerance in the hydrogen oxidation reaction[J].Advanced materials, 2022:e2208799.
[32] Yang Y, Gao F Y, Zhang X L, et al.Suppressing electron back-donation for a highly CO-tolerant fuel cell anode catalyst via cobalt modulation[J].Angewandte Chemie International Edition, 2022, 61(42):e202208040.
[33] Zhang X J, Li Z Q, Sun X P, et al.Regulating the surface electronic structure of RuNi alloys for boosting alkaline hydrogen oxidation electrocatalysis[J].ACS Materials Letters, 2022, 4(11):2097-2105.
[34] Han S M, Ma Y, Yun Q B, et al.The synergy of tensile strain and ligand effect in PtBi nanorings for boosting electrocatalytic alcohol oxidation[J].Advanced Functional Materials, 2022, 32(48):2208760.
[35] Qiao M, Meng F Y, Wu H, et al.PtCuRu nanoflowers with Ru-rich edge for efficient fuel-cell electrocatalysis[J].Small, 2022, 18(48):e2204720.
[36] Zhang Y, Liu X, Liu T, et al.Rhombohedral Pd-Sb nanoplates with Pd-terminated surface:An efficient bifunctional fuel-cell catalyst[J].Advanced Materials, 2022, 34(31):e2202333.
[37] Xu M, Dou H, Zhang Z, et al.Hierarchically nanostructured solid-state electrolyte for flexible rechargeable zinc-air batteries[J].Angewandte Chemie International Edition, 2022, 61(23):e202117703.
[38] Dou H, Xu M, Zheng Y, et al.Bioinspired tough solidstate electrolyte for flexible ultralong-life zinc-air battery[J].Advanced Materials, 2022, 34(18):e2110585.
[39] Zhang Y D, Liu J D, Xu W C, et al.Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries[J].Journal of Power Sources, 2022, doi:10.1016/j.jpowsour.2022.231445.
[40] Li F, Fan K, Tian Y H, et al.General flux-free synthesis of single crystal Ni-rich layered cathodes by employing a Li-containing spinel transition phase for lithiumion batteries[J].Journal of Materials Chemistry A, 2022, 10(31):16420-16429.
[41] Huang C, Xia X, Chi Z, et al.Preparation of single-crystal ternary cathode materials via recycling spent cathodes for high performance lithium-ion batteries[J].Nanoscale, 2022, 14(27):9724-9735.
[42] Chen X Q, Yang C F, Yang Y B, et al.Co-precipitation preparation of Ni-Co-Mn ternary cathode materials by using the sources extracting directly from spent lithiumion batteries[J].Journal of Alloys and Compounds, 2022, doi:10.1016/j.jallcom.2022.164691.
[43] Zheng T, Cui X, Chu Y, et al.Ultrahigh elastic polymer electrolytes for solid-state lithium batteries with robust interfaces[J].ACS Applied Materials & Interfaces, 2022, 14(4):5932-5939.
[44] Zhang J M, Zeng Y P, Li Q P, et al.Polymer-in-salt electrolyte enables ultrahigh ionic conductivity for advanced solid-state lithium metal batteries[J].Energy Storage Materials, 2023, 54:440-449.
[45] Cheng D M, Sun C, Lang Z L, et al.Hybrid covalent organic-framework-based electrolytes for optimizing interface resistance in solid-state lithium-ion batteries[J].Cell Reports Physical Science, 2022, 3(3):100731.
[46] Wang Z, Li Y, Ji H, et al.Unity of opposites between soluble and insoluble lithium polysulfides in lithium-sulfur batteries[J].Advanced Materials, 2022, 34(47):e2203699.
[47] Wang Z Y, Ge H L, Liu S, et al.High-entropy alloys to activate the sulfur cathode for lithium-sulfur batteries[J].Energy & Environmental Materials, 2022, doi:10.1002/eem2.12358.
[48] Tan Z L, Liu S, Zhang X, et al.Few-layered V2C MXene derived 3D V3S4 nanocrystal functionalized carbon flakes boosting polysulfide adsorption and catalytic conversion towards Li-S batteries[J].Journal of Materials Chemistry A, 2022, 10(36):18679-18689.
[49] Xu R, Tang H, Zhou Y, et al.Enhanced catalysis of radical-to-polysulfide interconversion via increased sulfur vacancies in lithium-sulfur batteries[J].Chemical Science, 2022, 13(21):6224-6232.
[50] Tong C, Chen H, Jiang S, et al.Suppress loss of polysulfides in lithium-sulfur battery by regulating the rate-determining step via 1T MoS2-MnO2 covering layer[J].ACS Applied Materials & Interfaces, 2022, doi:10.1021/acsami.2c18594.
[51] Li X X, Ding Y M, Pan X L, et al.Scission of C-O and C-C linkages in lignin over RuRe alloy catalyst[J].Journal of Energy Chemistry, 2022, 67:492-499.
[52] Jiang L, Xu G Y, Fu Y.Catalytic cleavage of the C-O bond in lignin and lignin-derived aryl ethers over Ni/AlPyOx catalysts[J].ACS Catalysis, 2022, 12(15):9473-9485.
[53] Liu F, Wang Q, Zhai G, et al.Continuously processing waste lignin into high-value carbon nanotube fibers[J].Nature Communications, 2022, doi:10.1038/s41467-022-33496-2.
[54] Sun Y, Wang T, Han C, et al.One-step preparation of lignin-based magnetic biochar as bifunctional material for the efficient removal of Cr(VI) and congo red:Performance and practical application[J].Bioresource Technology, 2022, 369(8):128373.
[55] Guan W X, Chen X, Tsang C W, et al.Highly dispersed Rh/NbO x invoking high catalytic performances for the valorization of lignin monophenols and lignin oil into aromatics[J].ACS Sustainable Chemistry & Engineering, 2021, 9(9):3529-3541.
[56] Chen B, He C Z, Cao M F, et al.Fabricating nickel phyllosilicate-like nanosheets to prepare a defect-rich catalyst for the one-pot conversion of lignin into hydrocarbons under mild conditions[J].Green Chemistry, 2022, 24(2):846-857.