[1] 梁美彦, 任竹云, 张存林.太赫兹空间探测技术研究进展[J].激光与光电子学进展, 2019, 56(18):180004.
[2] 冯伟, 韦舒婷, 曹俊诚.6G技术发展愿景与太赫兹通信[J].物理学报, 2021, 70(24):244303.
[3] van der Valk N C J, Planken P C M.Electro-optic detection of subwavelength terahertz spot sizes in the near field of a metal tip[J].Applied Physics Letters, 2002, 81(9):1558-1560.
[4] Planken P C M, van der Valk N C J.Spot-size reduction in terahertz apertureless near-field imaging[J].Optics letters, 2004, 29(19):2306-2308.
[5] Chen H T, Kersting R, Cho G C.Terahertz imaging with nanometer resolution[J].Applied Physics Letters, 2003, 83(15):3009-3011.
[6] Zhu W, Agrawal A, Nahata A.Planar plasmonic terahertz guided-wave devices[J].Optics Express, 2008, 16(9):6216-6226.
[7] Tonouchi M.Cutting-edge terahertz technology[J].Nature photonics, 2007, 1(2):97-105.
[8] Vaswani C, Mootz M, Sundahl C, et al.Terahertz secondharmonic generation from lightwave acceleration of symmetry-breaking nonlinear supercurrents[J].Physical Review Letters, 2020, 124(20):207003.
[9] Nakamura S, Katsumi K, Terai H, et al.Nonreciprocal terahertz second-harmonic generation in superconducting nbn under supercurrent injection[J].Physical Review Letters, 2020, 125(9):097004.
[10] Maier S A, Atwater H A.Plasmonics:Localization and guiding of electromagnetic energy in metal/dielectric structures[J].Journal of applied physics, 2005, 98(1):10.
[11] Hibbins A P, Evans B R, Sambles J R.Experimental verification of designer surface plasmons[J].Science, 2005, 308(5722):670-672.
[12] Zhang H C, Liu S, Shen X, et al.Broadband amplification of spoof surface plasmon polaritons at microwave frequencies[J].Laser & Photonics Reviews, 2015, 9(1):83-90.
[13] Yin J Y, Ren J, Zhang H C, et al.Broadband frequencyselective spoof surface plasmon polaritons on ultrathin metallic structure[J].Scientific Reports, 2015, 5(1):1-5.
[14] Yin J Y, Ren J, Zhang H C, et al.Capacitive-coupled series spoof surface plasmon polaritons[J].Scientific Reports, 2016, 6(1):1-8.
[15] Gao X, Zhou L, Cui T J.Odd-mode surface plasmon polaritons supported by complementary plasmonic metamaterial[J].Scientific Reports, 2015, 5(1):1-5.
[16] Garcia-Vidal F J, Fernández-Domínguez A I, MartinMoreno L, et al.Spoof surface plasmon photonics[J].Reviews of Modern Physics, 2022, 94(2):025004.
[17] Martín-Cano D, Nesterov M L, Fernandez-Dominguez A I, et al.Domino plasmons for subwavelength terahertz circuitry[J].Optics Express, 2010, 18(2):754-764.
[18] Pendry J B, Martin-Moreno L, Garcia-Vidal F J.Mimicking surface plasmons with structured surfaces[J].Science, 2004, 305(5685):847-848
[19] Shen X, Cui T J, Martin-Cano D, et al.Conformal surface plasmons propagating on ultrathin and flexible films[J].Proceedings of the National Academy of Sciences, 2013, 110(1):40-45.
[20] Jiang T, Shen L, Wu J J, et al.Realization of tightly confined channel plasmon polaritons at low frequencies[J].Applied Physics Letters, 2011, 99(26):261103.
[21] Zhang Y, Lu Y, Yuan M, et al.Rotated pillars for functional integrated on-chip terahertz spoof surface plasmon polariton devices[J].Advanced Optical Materials, 2022:2102561.
[22] Li H, Li Y, Yuan M, et al.Terahertz spoof surface plasmonic demultiplexer based on band-stop waveguide units[J].Applied Optics, 2022, 61(22):21-27.
[23] Le Zhang Q, Chen B J, Shum K M, et al.Miniaturized spoof surface plasmon polaritons load for planar terahertz circuit application on thick substrate[J].IEEE Transactions on Circuits and Systems II:Express Briefs, 2022, 69(3):1049-1053.
[24] Zhu H, Zhang Y, Ye L, et al.Compact terahertz on-chip filter with broadband rejection based on spoof surface plasmon polaritons[J].IEEE Electron Device Letters, 2022, 43(6):970-973.
[25] Yan S, Wang J, Kong X, et al.A terahertz band-pass filter based on coplanar-waveguide and spoof surface plasmon polaritons[J].IEEE Photonics Technology Letters, 2022, 34(7):375-378.
[26] Wang C, Zhang Z, Zhang Y, et al.Enhancing directivity of terahertz photoconductive antennas using spoof surface plasmon structure[J].New Journal of Physics, 2022, 24(7):073046.
[27] Feng M, Zhang B, Ling H, et al.Active metal-graphene hybrid terahertz surface plasmon polaritons[J].Nanophotonics, 2022, 11(14):3331-3338.
[28] Hlali A, Houaneb Z, Zairi H.A terahertz tunable attenuator based on hybrid metal-graphene structure on spoof surface plasmon polaritons waveguide[J].Physica B:Condensed Matter, 2022, 644:414208.
[29] Wang S, Chen K, Zhao J, et al.Tunable non-diffraction spoof surface plasmon polaritons with liquid crystal terahertz metasurface[C]//2021 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).Piscataway:IEEE, 2021:136-138.
[30] Yan D, Li X, Ma C, et al.Terahertz refractive index sensing based on gradient metasurface coupled confined spoof surface plasmon polaritons mode[J].IEEE Sensors Journal, 2022, 22(1):324-329.
[31] Kumari A, Singh S P, Tiwari N K, et al.Design of a differential spoof surface plasmon sensor for dielectric sensing and defect detection[J].IEEE Sensors Journal, 2022, 22(4):3188-3195.
[32] Fu J H, Wu W J, Wang D W, et al.High-sensitivity microfluidic sensor based on quarter-mode interdigitated spoof plasmons[J].IEEE Sensors Journal, 2022, 22(24):23888-23895.
[33] Chang M F, Cong J, Kaplan A, et al.CMP network-onchip overlaid with multi-band RF-interconnect[C]//2008 IEEE 14th International Symposium on High Performance Computer Architecture.Piscataway:IEEE, 2008:191-202.
[34] Liang Y, Yu H, Zhao J, et al.An energy efficient and low cross-talk CMOS sub-THz I/O with surface-wave modulator and interconnect[C]//2015 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).Piscataway:IEEE, 2015:110-115.
[35] Liang Y, Yu H, Feng G, et al.An energy-efficient and low-crosstalk sub-THz I/O by surface plasmonic polariton interconnect in CMOS[J].IEEE Transactions on Microwave Theory and Techniques, 2017, 65(8):2762-d:PDF.pdf2774.
[36] Liang Y, Yu H, Wang H, et al.Towards integrated metadevices for terahertz silicon plasmonics:A review of recent progress[J].Chip, 2022:100030.
[37] Liang Y, Boon C C, Zhang H C, et al.A 13.5 Gb/s 140 GHz silicon redriver exploiting metadevices for shortrange OOK communications[J].IEEE Transactions on Microwave Theory and Techniques, 2022, 70(1):239-d:PDF.pdf253.
[38] Blessan T M, Venkateswaran C, Yogesh N.All-optical terahertz logic gates based on coupled surface plasmon polariton sub-wavelength waveguiding in bulk Dirac semimetal[J].Optik, 2022, 257:168795.
[39] Imtiaz N, Nayem S H, Joy S R, et al.On-chip channel conductance based modulation of spoof surface plasmon polariton interconnects[C]//CLEO:Science and Innovations, Optica Publishing Group, 2022:34.
[40] Bhati R, Jewariya M, Malik A K.Spoof surface plasmonbased terahertz metasensor for glucose and ethanol[J].Applied Physics A, 2022, 128(9):1-8.
[41] Sarkar A, Banna G M H U, Unluturk B, et al.Dualmode annular spoof surface plasmon polariton based thz compact bio-sensors with increased sensitivity and bandwidth[C]//2022 IEEE Sensors.Piscataway:IEEE, 2022:1-4.
[42] Yao H, Zhang W, Liu W, et al.Resolved terahertz spectroscopy of tiny molecules employing tunable spoof plasmons in an otto prism configuration[J].Journal of Optics, 2022, 24(4):045301.
[43] Li X J, Yang J, Yan D X, et al.Highly enhanced trace amount terahertz fingerprint spectroscopy by multiplexing surface spoof plasmon metasurfaces in a single layer[J].Optics Communications, 2022, 525:128777.