[1] 杨粉莉. 葡萄黄化病的发病机理及防治方法[J]. 现代园艺, 2019(1): 159-160.
[2] 孟秀利, 林兆威, 杨德洁,等. 槟榔黄化病植株组织结构观察及生理指标分析[J]. 分子植物育种, 2022, 20(18):1-16.
[3] 牟海青, 朱水芳, 徐霞,等. 植原体病害研究概况[J]. 植物保护, 2011, 37(3): 17-22.
[4] Marzachi C, Veratti F, Bosco D. Direct PCR detection of phytoplasmas in experimentally infected insects[J]. Annals of Applied Biology, 1998, 133(1): 45-54.
[5] 葛泉卿. 葡萄植原体黄化病及其检疫技术[D]. 泰安: 山东农业大学, 2006.
[6] 王引权, 古勤生, 陈建军,等. 葡萄病毒病研究进展[J].果树学报, 2004, 21(3): 258-263.
[7] 赵静静, 乾义柯, 颉超,等. 引起葡萄黄化类症状的病毒和类病毒 RT-PCR 检测[J]. 新疆农业科学, 2015, 52(6):1099-1104.
[8] 李知行. 葡萄病毒病与类似病毒病[J]. 北方园艺, 1991(8): 6-8.
[9] 薛敦孟, 柯冲, 郑铭西. 葡萄主要病毒及其病原病毒(续)[J]. 福建果树, 1990(2): 57-60, 17.
[10] 王记侠, 张新杰, 何维华,等. 我国葡萄病毒病及其防治[J]. 中外葡萄与葡萄酒, 2007(4): 38-41.
[11] 贺普超. 葡萄学[M]. 北京: 中国农业出版社, 1999: 1-2.
[12] 王勇, 李玉玲, 郭平峰,等. NaCl盐胁迫对无核白葡萄生长的影响[J]. 中外葡萄与葡萄酒, 2014(1): 36-40.
[13] Parida A K, Das A B. Salt tolerance and salinity effects on plants: A review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324-349.
[14] Poljakoff-Mayber A. Morphological and anatomical changes in plants as a response to salinity stress[M]//Plants in Saline Environments. Berlin, Heidelberg: Springer, 1975: 97-117.
[15] 廖祥儒, 贺普超, 朱新产. 盐渍对葡萄光合色素含量的影响[J]. 园艺学报, 1996, 23(3): 300-302.
[16] 许祥明, 叶和春, 李国凤. 植物抗盐机理的研究进展[J]. 应用与环境生物学报, 2000, 6(4): 379-387.
[17] 李超. 盐胁迫下不同抗盐苹果砧木响应的生理差异及褪黑素的缓解效应[D]. 杨凌: 西北农林科技大学,2012.
[18] 秦玲, 齐艳玲, 秦子禹,等. 葡萄耐盐生理生化特性研究进展[J]. 河北科技师范学院学报, 2011, 25(3): 75-80.
[19] 何天明, 刘泽军, 覃伟铭,等. 土壤因子对库尔勒香梨缺铁失绿症发生的影响[J]. 西北农业学报, 2013, 22(1): 97-103.
[20] Lindsay W L, Schwab A P. The chemistry of iron in soils and its availability to plants[J]. Journal of Plant Nutrition, 1982, 5(4-7): 821-840.
[21] 李宝鑫, 杨俐苹, 卢艳丽,等. 我国葡萄主产区的土壤养分丰缺状况[J]. 中国农业科学, 2020, 53(17): 3553-3566.
[22] Mengel K. Iron availability in plant tissues-iron chlorosis on calcareous soils[J]. Plant and Soil, 1994, 165(2):275-283.
[23] Jacobson L. Iron in the leaves and chloroplasts of some plants in relation to their chlorophyll content[J]. Plant Physiology, 1945, 20(2): 233-245.
[24] Mengel K, Scherer H W, Malissiovas N. Chlorosis with respect to soil chemistry and the nutrition of vines [grapes] [J]. Mitteilungen Rebe und Wein, Obstbau und Fruechtenverwertung (Austria), 1979, 29(4): 151-156.
[25] Mengel K. Bicarbonat als auslösender Faktor der Eisenchlorose bei der Weinrebe (Vitis vinifera)[J]. Vitis 1981,20(3): 235-343.
[26] Wang T G, Peverly J H. Investigation of ferric iron reduction on the root surfaces of common reeds using an EDTA-BPDS method[J]. Journal of Plant Nutrition,1999, 22(6): 1021-1032.
[27] Susin S, Abadia A, González-Reyes J A, et al. The pH requirement for in vivo activity of the iron-deficiency induced turbo ferric chelate reductase (a comparison of the iron-deficiency-induced iron reductase activities of intact plants and isolated plasma membrane fractions in sugar beet)[J]. Plant Physiology, 1996, 110(1): 111-123.
[28] Brown J C, Jolley V D. Plant metabolic responses to iron-deficiency stress[J]. BioScience, 1989, 39(8): 546-551.
[29] Kosegarten H U, Hoffmann B, Mengel K. Apoplastic pH and Fe3+ reduction in intact sunflower leaves[J]. Plant Physiology, 1999, 121(4): 1069-1079.
[30] Mengel K, Planker R, Hoffmann B. Relationship between leaf apoplast pH and iron chlorosis of sunflower (Helianthus annuus L.) [J]. Journal of Plant Nutrition,1994, 17(6): 1053-1065.
[31] Mengel K, Geurtzen G. Iron chlorosis on calcareous soils. Alkaline nutritional condition as the cause for the chlorosis[J]. Journal of Plant Nutrition, 1986, 9(3-7):161-173.
[32] 邹春琴, 张福锁. 叶片质外体pH降低是铵态氮改善植物铁营养的重要机制[J].科学通报,2003, 48(16):1791-1795.
[33] Mengel K, Breininger M T, Bübl W. Bicarbonate, the most important factor inducing iron chlorosis in vine grapes on calcareous soil[J].Plant and Soil, 1984, 81(3): 333-344.
[34] Toulon V, Sentenac H, Thibaud J B, et al. Role of apoplast acidification by the H+ pump[J]. Planta, 1992, 186(2): 212-218.
[35] Miller G W. Carbon dioxide-bicarbonate absorption, accumulation, effects on various plant metabolic reactions,and possible relations to lime-induced chlorosis[J]. SoilScience, 1960, 89(5): 241-245.
[36] 刘春燕, 周龙, 贾舟楫,等. 黄化对吐鲁番葡萄叶片光合及叶绿素荧光特性的影响[J]. 经济林研究, 2018, 36(2): 115-120.
[37] 黄小晶, 许泽华, 牛锐敏,等. 叶片黄化对‘赤霞珠’葡萄光合及叶绿素荧光特性的影响[J]. 经济林研究,2020, 38(3): 190-199.
[38] Shahsavandi F, Eshghi S, Gharaghani A, et al. Effects of bicarbonate induced iron chlorosis on photosynthesis apparatus in grapevine[J]. Scientia Horticulturae, 2020,270: 109427.
[39] 王翠玲, 杨晓明, 曹孜义. 缺铁黄化对葡萄生长及果实品质的影响[J]. 果树学报, 2007, 24(1): 26-29, 127.
[40] 周龙, 刘春燕, 董凯向,等. 生理性黄化对吐鲁番地区葡萄枝、叶形态学变化的影响[J]. 新疆农业科学, 2018,55(8): 1473-1482.
[41] Bavaresco L, Fregoni H, Fraschini P. Investigations on some physiological parameters involved in chlorosis occurrence in grafted grapevine[J]. Journal of Plant Nutrition, 1992, 15(10): 1791-1807.
[42] Bavaresco L, Poni S. Effect of calcareous soil on photosynthesis rate, mineral nutrition, and source-sink ratio of table grape[J]. Journal of Plant Nutrition, 2003, 26(10-11): 2123-2135
[43] 刘春燕, 罗洁, 周龙,等. 黄化病对葡萄生长发育的影响[J]. 中国农学通报, 2018, 34(11): 103-107.
[44] Bavaresco L, Civardi S, Pezzutto S, et al. Grape production, technological parameters, and stilbenic compounds as affected by lime-induced chlorosis[J]. Vitis, 2005, 44(2): 63-65.
[45] Sánchez R, García M R G, Vilanova M, et al. Aroma composition of Tempranillo grapes as affected by iron deficiency chlorosis and vine water status[J]. Scientia Agricola, 2021, doi:10.1590/1678-992X-2019-0112.
[46] 任芳, 董雅凤, 张尊平,等. 葡萄病毒研究最新进展[J].园艺学报, 2014, 41(9): 1777-1792.
[47] 曹晓艳, 谭博, 苏玉芳,等. 果树黄化病研究进展[J]. 北方果树, 2014(2): 1-3.
[48] 刘宝生, 王勇, 刘春艳,等. 果林树木黄化病的研究进展[J]. 天津农业科学, 2008, 14(6): 61-65.
[49] Huang S, Rui W Y, Peng X X, et al. Organic carbon fractions affected by long-term fertilization in a subtropical paddy soil[J]. Nutrient Cycling in Agroecosystems,2010, 86(1): 153-160.
[50] 杨青松, 李小刚, 蔺经,等. 生草对梨园土壤有效养分、水分、温度及果实品质、产量的影响[J]. 江苏农业科学, 2007, 35(5): 109-111.
[51] Papastylianou I. Timing and rate of iron chelate application to correct chlorosis of peanut[J]. Journal of Plant Nutrition, 1993, 16(7): 1193-1203.
[52] Hernandez-Apaolaza L, Gárate A, Lucena J J. Efficacy of commercial Fe(III) -EDDHA and Fe(III) -EDDHMA chelates to supply iron to sunflower and corn seedlings[J]. Journal of Plant Nutrition, 1995, 18(6): 1209-1223.
[53] Alva A K. Solubility and iron release characteristics of iron chelates and sludge products[J]. Journal of Plant Nutrition, 1992, 15(10): 1939-1954.
[54] Tagliavini M, Abadía J, Rombolà A D, et al. Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees[J]. Journal of Plant Nutrition, 2000,23(11-12): 2007-2022.
[55] 邹春琴, 张福锁. 叶片质外体pH降低是铵态氮改善植物铁营养的重要机制[J].科学通报,2003, 48(16):1791-1795.
[56] Wallace A. Agronomic and horticultural aspects of iron and the law of the maximum[M]//Iron Nutrition in Soils and Plants. Dordrecht: Springer Netherlands, 1995: 207-216.
[57] Tagliavini M, Masia A, Quartieri M. Bulk soil pH and rhizosphere pH of peach trees in calcareous and alkaline soils as affected by the form of nitrogen fertilizers [J]. Plant and Soil, 1995, 176(2): 263-271.
[58] Marschner H, Römheld V, Kissel M. Different strategies in higher plants in mobilization and uptake of iron[J].Journal of Plant Nutrition, 1986, 9(3-7): 695-713.
[59] 翟衡, 李佳, 邢全华,等. 抗缺铁葡萄砧木的鉴定及指标筛选[J]. 中国农业科学, 1999, 32(6): 34-39.
[60] Karimi R, Salimi F. Iron-chlorosis tolerance screening of 12 commercial grapevine (Vitis vinifera L.) cultivars based on phytochemical indices[J]. Scientia Horticulturae, 2021, 283: 110111.
[61] Bavaresco L, Fregoni M, Gambi E. In vitro method to screen grapevine genotypes for tolerance to lime-induced chlorosis[J]. Vitis, 1993, 32(3): 145-148.
[62] Ksouri R, Gharsalli M, Lachaal M. Physiological responses of Tunisian grapevine varieties to bicarbonate-induced iron deficiency[J]. Journal of Plant Physiology,2005, 162(3): 335-341.
[63] Pouget R. Breeding grapevine rootstocks for resistance to iron chlorosis[C]//Proceedings of the 3rd International Symposium on Grape Breeding. Davis: Dept. of Vitic.and Enology, 1980: 191-197