The fire or explosion of the aircraft fuel system is one of the main causes of aircraft crash. It is necessary to carry out theoretical and experimental researches on the fire and explosion protection capabilities of aircraft fuel tanks. The fuel inerting system has been developed in recent years. In the use of civil aircraft fuel tank inerting system, whether the optimal inerting efficiency can be achieved is one of the hot issues widely concerned. In order to study the influence of different factors on the inerting characteristics of the fuel tank, a set of aircraft fuel inerting test device was designed and developed firstly to simulate the washing inerting process of the aircraft fuel tank, and then the influence of different inlet flow, concentration and inlet position on the inerting characteristics of the aircraft fuel tank inerting system was explored. The research can provide theoretical guidance and technical support for the further development and application of domestic civil aircraft fuel inerting devices.
SUN Yigang
,
GUAN Xin
,
LIU Bingfei
. Experimental analysis on influencing factors of aircraft fuel tank inerting characteristics[J]. Science & Technology Review, 2023
, 41(4)
: 83
-96
.
DOI: 10.3981/j.issn.1000-7857.2023.04.010
[1] Abramowitz A, Boris P. Characterization of an oxygen/nitrogen permeable membrane system[R]. New York: FAA,1996.
[2] 雷延生, 王澍. 基于FAA适航要求的飞机燃油箱防爆技术研究[J]. 民用飞机设计与研究, 2011(3): 23-27.
[3] 闫红敏 . 军用飞机燃油箱的氮气惰化特性研究[D]. 沈阳: 沈阳航空工业学院, 2006.
[4] 刘小芳, 刘卫华 . 飞机供氧和燃油箱惰化技术概况[J].北华航天工业学院学报, 2008(3): 4-7.
[5] 冯诗愚, 刘冠男, 江荣杰, 等. 飞机燃油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报, 2021, 36(3):616-625.
[6] CCAR-25-R4 中国民用航空规章第25部-运输类飞机适航标准[S]. 北京: 中国民航总局, 2011
[7]蒋东升, 孙兵, 刘文彪, 等. 膜分离器及其机载应用[J]. 南京航空航天大学学报, 2017, 49(S1): 168-172.
[8] 刘小芳, 刘卫华, 钱国诚, 等.机载中空纤维膜富氮性能实验[J]. 航空动力学报, 2012, 27(5): 976-980.
[9] 黄雪飞. 膜制氮技术在民用飞机油箱防火防爆上的应用与发展[C]//飞机机电系统理论与实践——第二届民用飞机机电系统国际论坛论文集.北京:中国航空学会,2015: 191-194.
[10] 邵垒, 刘卫华, 冯诗愚,等. 机载空分装置富氮气体流量及影响因素[J]. 北京航空航天大学学报, 2015, 41(1): 141-146.
[11] 薛勇, 刘卫华, 高秀峰,等. 机载惰化系统中空纤维膜分离性能的实验研究[J]. 西安交通大学学报, 2011, 45(3): 107-111.
[12] 蔡琰, 林贵平, 曾宇,等. 中空纤维膜机载制氮装置的数学建模分析[J]. 航空动力学报, 2015, 30(9): 2100-2107.
[13] 冯诗愚, 卢吉, 刘卫华,等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6): 1332-1339.
[14] Katoh T, Tokumura M, Yoshikawa H, et al. Dynamic simulation of multicom- ponent gas separation by hollowfiber membrane module: Nonideal mixing flows in pe-rmeate and residue sides using the tanks-in-series model[J]. separation and Purification Technology, 20l1,76(3): 362-372.
[15] 汪明明, 冯诗愚, 蒋军昌,等. 飞机燃油箱冲洗与洗涤惰化技术比较分析[J]. 南京航空航天大学学报, 2010,42(5): 614-619.
[16] 黄雪飞, 刘文怡, 冯诗愚,等. 单流和双流模式对燃油箱冲洗惰化过程影响[J]. 南京航空航天大学学报,2018, 50(4): 435-441.
[17] Cavage W, Bowman T. Modeling in-flight inert gas distribution in a 747 center wing fuel tank[J]. Immunology Letters, 2005, 1(2): 61-65.
[18] Buns M, Cavage W. Ground and flight testing of a Boeing 737 center wing fuel tank inerted with nitrogen enriched air[R]. New York: FAA, 2001.
[19] Michael B, William M C, Richard H, et al. Flight-testing of the FAA Onboard inert gas generation system on an airbus A320[C]//International Fire and Cabin Safety Research Conference 2004. Lisbon, Portugal: Federal Aviation Administration, 2004:15-18.
[20] 黄光容. 燃油箱惰化系统的数值研究[D]. 合肥: 中国科学技术大学, 2011.
[21] 魏树壮 . XX型飞机燃油箱惰化系统设计与仿真研究[D]. 南京: 南京航空航天大学, 2014.
[22] 张声奇, 王学德, 王志伟,等. 多隔舱燃油箱惰化流场的数值模拟与分析[J]. 航空动力学报, 2013, 28(4):838-843.
[23] 鹿世化 . 油箱惰化空间浓度场模拟和气流优化的理论与实验研究[D]. 南京: 南京航空航天大学, 2012.
[24] Shao L, Liu W H, Li C Y, et al. Experimental comparison between aircraft fuel tank inerting processes using NEA and MIG[J]. Chinese Journal of Aeronautics, 2018,31(7): 1515-1524.
[25] Feng S Y, Li C Y, Peng X T, et al. Digital holography interferometry for measuring the mass diffusion coefficients of N2 in RP-3 and RP-5 jet fuels[J]. Aircraft Engineering and Aerospace Technology, 2019, 91(8):1093-1099.