Papers

Research on the evolution model of disruptive technological innovation from the perspective of technology source and initial target market

  • LIU Liu ,
  • WU Xinnian
Expand
  • 1. Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
    2. Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-10-25

  Revised date: 2022-04-13

  Online published: 2023-03-13

Abstract

The process of disruptive technological innovation is accompanied by the evolution of technology and the expansion of market. At present, the academic discussion on the evolution mode of disruptive technological innovation is mainly based on the perspectives of technology, market, institutional mechanism and innovation ecosystem, and lacks in-depth analysis on the source of technology. Due to the diversity of the sources of disruptive technology and the differences of the initial target markets, disruptive technologies do not follow the unified evolutionary path. Based on the source of technological innovation, disruptive technologies can be divided into three types: innovative breakthrough type, integrated reorganization type, and cross-border application type. Through different combinations of the three types of disruptive technologies and the initial target markets, a variety of disruptive technologies evolution models are summarized, providing a new theoretical perspective for the classification and identification of disruptive technologies, as well as the cultivation and development of disruptive technologies.

Cite this article

LIU Liu , WU Xinnian . Research on the evolution model of disruptive technological innovation from the perspective of technology source and initial target market[J]. Science & Technology Review, 2023 , 41(4) : 104 -113 . DOI: 10.3981/j.issn.1000-7857.2023.04.012

References

[1] Bower J L, Christensen C M. Disruptive technologies:Catching the wave[J]. Harvard Business Review, 1995, 73(1): 43-53.
[2] Christensen C M. The innovators dilemma: When new technologies cause great firms to fail[M]. Boston: Harvard Business School Press, 1997.
[3] Foster R N. Working the S-Curve: Assessing technological threats[J]. Research Management, 1986, 29(4): 17-20.
[4] 王山, 谭宗颖 . 技术生命周期判断方法研究综述[J]. 现代情报, 2020, 40(11): 144-153.
[5] 付玉秀, 张洪石. 突破性创新: 概念界定与比较[J]. 数量经济技术经济研究, 2004, 21(3): 73-83.
[6] 成雨 . 颠覆性技术的识别、扩散与研发时机研究[D]. 北京: 北京工业大学, 2017.
[7] Coccia M. Asymmetry of the technological cycle of disruptive innovations[J]. Technology Analysis & Strategic Management, 2020, 32(12): 1462-1477.
[8] Christensen C M, Raynor M E. The innovator's solution:Creating and sustaining successful[M]. Boston: Harvard Business Review Press, 2003.
[9] Gilbert C. The disruption opportunity[J]. Mit Sloan Management Review, 2003, 44(4): 27-32.
[10] Schmidt G M, Druehl C T. When is a disruptive innovation disruptive? [J]. Journal of Product Innovation Management, 2008, 25(4): 347-369.
[11] 张枢盛, 陈继祥 . 颠覆性创新演进、机理及路径选择研究[J]. 商业经济与管理, 2013(5): 39-48.
[12] 李平, 臧树伟 . 基于破坏性创新的后发企业竞争优势构建路径分析[J]. 科学学研究, 2015, 33(2): 295-303.
[13] 张庆普, 周洋, 王晨筱, 等 . 跨界整合式颠覆性创新内在机理与机会识别研究[J]. 研究与发展管理, 2018, 30(6): 93-105.
[14] 尚甜甜, 缪小明, 鲁迪, 等 . 颠覆性技术与商业模式共演过程研究[J]. 科技进步与对策, 2020, 37(4): 11-18.
[15] Danneels E. Disruptive technology reconsidered: A critique and research agenda[J]. Journal of Product Innovation Management, 2004, 21(4): 246-258.
[16] Govindarajan V, Kopalle P K. The usefulness of measuring disruptiveness of innovations ex post in making EX ANTE predictions[J]. Journal of Product Innovation Management, 2006, 23(1): 12-18.
[17] 孙启贵, 邓欣, 徐飞. 破坏性创新的概念界定与模型构建[J]. 科技管理研究, 2006(8): 175-178.
[18] Sandstrom C. High-end disruptive technologies with an inferior performance[J]. International Journal of Technology Management, 2011, 56(2/3/4): 109-122.
[19] Sood A, Tellis G J. Demystifying disruption: A new model for understanding and predicting disruptive technologies[J]. Marketing Science, 2011, 30(2): 339- 354.
[20] Yu D, Hang C C. A reflective review of disruptive innovation theory[J]. International Journal of Management Review, 2010, 12(4): 435-452.
[21] Parry M E, Kamakami T. The encroachment speed of potentially disruptive innovations with indirect network externalities: The case of e-readers[J]. Journal of Product Innovation Management, 2017, 34(2): 141-158.
[22] 周洋, 张庆普 . 高端颠覆性创新的技术演进轨迹和市场扩散路径[J]. 研究与发展管理, 2017, 29(6): 99-108.
[23] 明星, 胡立君, 王亦民. 跨界高端颠覆性创新模式研究:理论与案例验证[J]. 科技进步与对策, 2020, 37(15):11-17.
[24] 鲍萌萌, 武建龙 . 新兴产业颠覆性创新过程研究——基于创新生态系统视角[J]. 科技与管理, 2019, 21(1):8-13.
[25] 刘文勇. 颠覆式创新的内涵特征与实现路径解析[J]. 商业研究, 2019(2): 18-24.
[26] 薛捷 . 技术-市场双元性组合对破坏性创新的影响——以科技型小微企业为研究对象[J]. 科研管理,2019, 40(3): 10-20.
[27] 刘亚东 . 刍议新型举国体制[J]. 民主与科学, 2021(3):38-41.
[28] 李哲, 苏楠 . 社会主义市场经济条件下科技创新的新型举国体制研究[J]. 中国科技论坛, 2014(2): 5-10.
[29] 党的十九届四中全会《决定》[EB/OL]. [2022-03-24].https://china.huanqiu.com/article/9CaKrnKnC4J.
[30] 新型举国体制新在哪里[EB/OL]. [2022-03-24]. http://www.banyuetan.org/szjj/detail/20210126/1000200033135991611625366193950888_1.html.
[31] 刘云, 桂秉修, 马志云, 等 . 国家重大工程背景下的颠覆性创新模式探究[J]. 科学学研究 , 2019, 37(10):1864-1873.
[32] 廉思秋, 高山行, 舒成利, 等 . 新型举国体制下构建触发中国高新技术突破的“扇形”模式研究[J]. 中国科技论坛, 2021(11): 149-157.
[33] 罗军, 侯小星, 陈之瑶. 央地联动发挥新型举国体制优势开展关键核心技术攻关研究[J]. 科技管理研究,2021, 41(23): 48-55.
[34] 路风, 何鹏宇 . 举国体制与重大突破——以特殊机构执行和完成重大任务的历史经验及启示[J]. 管理世界,2021, 37(7):1-18+1.
[35] SpaceX发展与政府支持专题(一):SpaceX 是怎样长大的 [EB/OL]. [2022-03-24]. http://www.csaspace.org.cn/n2489287/n2505495/c2874633/content.html.
[36] 美国“举国体制”下的 spaceX 与中国航天的创新之路[EB/OL]. [2021-07-09]. https://mp.weixin.qq.com/s/I9Xsv_gAW9xFU-b7zao7Kw.
[37] 威廉·J·克林顿, 小阿伯特·戈尔 . 科学与国家利益[M].曾国屏, 王蒲生, 译 . 北京: 科学技术文献出版社,1999.
[38] 王俊娜, 李纪珍, 禇文博. 颠覆性创新的价值系统分析——以广东省 LED 照明行业为例[J]. 科学学研究,2012, 30(4): 614-621.
[39] Schuelke-Leech B A. A model for understanding the orders of magnitude of disruptive technologies[J]. Technological Forecasting and Social Change, 2018, 129: 261-274.
[40] Nthubu B, Richards D, Cruickshank L. Disruptive innovation ecosystems: Reconceptualising innovation ecosystems[C]//Academy for Design Innovation Management Conference. London, UK: the Academy for Design Innovation Management, 2019: 629-644.
[41] 李桢, 欧光军, 刘舒林. 高技术企业颠覆性技术创新能力影响因素识别与提升探究——基于创新生态系统视角[J]. 技术与创新管理, 2021, 42(1): 20-28.
[42] 王海军, 金姝彤, 束超慧, 等 . 为什么硅谷能够持续产生颠覆性创新?——基于企业创新生态系统视角的分析[J]. 科学学研究, 2021, 39(12): 2267-2280.
[43] 束超慧, 王海军, 金姝彤, 等 . 人工智能赋能企业颠覆性 创 新 的 路 径 分 析 [J/OL]. [2022-04-07].  https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=KXYJ2022022100A&uniplatform=NZKPT&v=nZCJDqLeeM9TWOOmZzti00ruDoqmjC9Sp8qpHuRyJC3hCtBlqCPKlvSxR-CXIjF6.
[44] Lee S K, Buxton W, Smith K C. A multi-touch three dimensional touch-sensitive tablet[J]. Acm Sigchi Bulletin, 1985, 16 (4): 21-25.
[45] Wayne W, John G E. Method and apparatus for integrating manual input[P]. 美国专利: 6323846, 1999-08-09.
[46] 张锋, 陈硕 . 多点触控交互方式的回顾与展望[J]. 人类工效学, 2010, 16(4): 76-78.
[47] West J, Mace M. Browsing as the killer app: Explaining the rapid success of Apple's iPhone[J]. Telecommunications Policy, 2010, 34(5): 270-286.
[48] 脑机接口技术在医疗健康领域应用白皮书[EB/OL].[2022-03-24]. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202107/P020210715603240201817.pdf .
[49] 李静雯, 王秀梅 . 脑机接口技术在医疗领域的应用[J].信息通信技术与政策, 2021(2): 87-91.
[50] Vidal J J. Towards direct brain-computer communication[J]. Annual Review of Biophysics and Bioengineering,1973, 2: 157-180.
[51] Dewan S G, Chen L D. Mobile payment adoption in the US: A Cross-industry, crossplatform solution[J]. Journal of Information Privacy & Security, 2005, 1(2): 4-28.
[52] 吕晓华, 牟茜茜 . 移动支付方法及技术专利技术综述[J]. 中国科技信息, 2018(17): 30-31+13.
[53] 张云, 袁顺波, 苏保朵. 国际移动支付领域专利技术态势研究[J]. 情报杂志, 2014, 33(7): 70-75.
[54] 刘庆全, 蔡小锦, 宁钟 . 颠覆性技术研究述评与展望——基于战略生态位管理视角[J]. 管理现代化, 2021,41(3): 107-114.
Outlines

/