Exclusive: Boost China's Strength in Manufacturing

Research progress and prospect of additive manufacturing of key materials for aeroengines and gas turbines

  • CHEN Chaoyue ,
  • WANG Jiang ,
  • WANG Ruixin ,
  • ZHU Xiongjin ,
  • ZHAO Wang ,
  • CAI Jianan ,
  • REN Zhongming
Expand
  • State Key Laboratory of Advanced Special Steels, School of Materials Science and Engineering, Shanghai University,Shanghai 200444, China

Received date: 2022-12-06

  Revised date: 2023-02-20

  Online published: 2023-03-27

Abstract

Additive manufacturing technology can break through the processing and design limitations of traditional processes and realize integrated forming of high-performance parts with complex structures. It has great application potential in aero engines and gas turbines. In this paper, for three types of alloys, including nickel-based superalloys, titanium-based alloys, and high-strength steels, the microstructure characteristics and control methods of laser processing parameters, composition modification, and external field are reviewed at first. Then the typical characteristics and comparison of mechanical properties are summarized, which provide an in-depth understanding of the mapping relationship between process parametersmicrostructure-mechanical properties of additive manufacturing alloys. Finally, the application status and typical cases of additive manufacturing of the above materials in key components are introduced. In addition, this paper also looks ahead at the new additive manufacturing technology, microstructure control technology, special alloy composition, and research on the process stability for key components in the field of aero engines and gas turbines, which can further promote the application of additive manufacturing technology.

Cite this article

CHEN Chaoyue , WANG Jiang , WANG Ruixin , ZHU Xiongjin , ZHAO Wang , CAI Jianan , REN Zhongming . Research progress and prospect of additive manufacturing of key materials for aeroengines and gas turbines[J]. Science & Technology Review, 2023 , 41(5) : 34 -48 . DOI: 10.3981/j.issn.1000-7857.2023.05.004

References

[1] Mouritz A P. Introduction to aerospace materials[M]. Amsterdam: Elsevier, 2012.
[2] Schafrik R, Sprague R. Gas turbine materials[J]. Advanced Materials & Processes, 2004, 162(5): 29-34.
[3] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components: Process, structure and properties[J]. Progress in Materials Science, 2018, 92:112-224.
[4] 夏丹 . 增材制造技术的发展与挑战[J]. 现代农机, 2022(5): 122-124.
[5] Volpato G M, Tetzlaff U, Fredel M C. A comprehensive literature review on laser powder bed fusion of inconel superalloys[J]. Additive Manufacturing, 2022, 55: 102871.
[6] 王艺锰 . 定向能量沉积激光头一体化设计及3D打印制造[D]. 广州: 华南理工大学, 2020.
[7] Long H B, Mao S C , Liu Y N, et al. Microstructural and compositional design of Ni-based single crystalline superalloys―A review[J]. Journal of Alloys and Compounds,2018, 743: 203-220.
[8] Xia W S , Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys[J].Journal of Materials Science & Technology, 2020, 44: 76-95.
[9] Li Y, Liang X, Yu Y, et al. Review on additive manufacturing of single-crystal nickel-based superalloys[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(1): 100019.
[10] Ikeda A, Goto K, Osada T, et al. High-throughput mapping method for mechanical properties, oxidation resistance, and phase stability in Ni-based superalloys using composition-graded unidirectional solidified alloys[J].Scripta Materialia, 2021, 193: 91-96.
[11] Xiao J H, Jiang W G, Han D Y, et al. Evolution of crystallographic orientation and microstructure in the triangular adapter of grain continuator of a 3rd-generation single crystal superalloy casting during directional solidification[J]. Journal of Alloys and Compounds, 2022,898: 162782.
[12] Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.
[13] Aprilia A, Wu N E, Zhou W. Repair and restoration of engineering components by laser directed energy deposition[J]. Materials Today: Proceedings, 2022: 206-211.
[14] Gong G H, Ye J J, Chi Y M, et al. Research status of laser additive manufacturing for metal: A review[J]. Journal of Materials Research and Technology, 2021, 15:855-884.
[15] Moeinfar K, Khodabakhshi F, Kashani-bozorg S F, et al.A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys,and titanium alloys[J]. Journal of Materials Research and Technology, 2022, 16: 1029-1068.
[16] 王迪, 钱泽宇, 窦文豪, 等 . 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术, 2018, 61: 49-60.
[17] 刘泽程, 王国伟, 肖祥友, 等 . 选择性激光熔化镍基高温合金的工艺优化[J]. 粉末冶金技术, 2021, 39(1): 81-88.
[18] Wang R, Chen C Y, Liu M Y, et al. Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy[J]. Materials Today Communications, 2022, 30: 103095.
[19] Zhang L, Li Y T, Zhang Q D, et al. Microstructure evolution, phase transformation and mechanical properties of IN738 superalloy fabricated by selective laser melting under different heat treatments[J]. Materials Science and Engineering: A, 2022, 844: 142947.
[20] Hang P Y, Zhou X, Zhang W Q, et al. Effects of meltpool geometry on the oriented to misoriented transition in directed energy deposition of a single-crystal superalloy[J]. Additive Manufacturing, 2022, 60: 103253.
[21] Basak A, Acharya R, Das S. Epitaxial deposition of nickel-based superalloy René 142 through scanning laser epitaxy (SLE)[J]. Additive Manufacturing, 2018, 22: 665-671.
[22] Chen H, Huang G S, Lu Y Y, et al. Epitaxial laser deposition of single crystal Ni-based superalloy: Variation of stray grains[J]. Materials Characterization, 2019, 158:109982.
[23] Chen Z G, Li W J, Wang L, et al. Investigation on the hot crack sensitivity of a nickel-based single crystal superalloy fabricated by epitaxial laser metal forming[J].Journal of Alloys and Compounds, 2023, 931: 167436.
[24] Lu N N, Lei Z L, Yu X F, et al. Effects of melt convection on stray grain formation in single crystal superalloys during directed energy deposition[J]. Additive Manufacturing, 2021, 48: 102429.
[25] Liu G, Du D, Wang K M, et al. Epitaxial growth behavior and stray grains formation mechanism during laser surface re-melting of directionally solidified nickelbased superalloys[J]. Journal of Alloys and Compounds,2021, 853: 157325.
[26] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65: 75-83.
[27] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidfication[J].Materials Science and Engineering: A, 1997, 228: 763-769.
[28] Nie J W, Chen C Y, Liu L T, et al. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition[J].Journal of Materials Science & Technology, 2021, 62:148-161.
[29] 陈娇, 罗桦, 贺戬, 等 . 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成型工程, 2023, 15(1):156-169.
[30] 张红梅, 顾冬冬 . 激光增材制造镍基高温合金构件形性调控及在航空航天中的应用[J]. 电加工与模具, 2020(6): 10-24.
[31] Biffi C A, Lecis N, Previtali B, et al. Fiber laser microdrilling of titanium and its effect on material microstructure[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54: 149-160.
[32] Zaefferer S. A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture[J]. Materials Science & Engineering A, 2003, 344 (1/2): 20-30.
[33] 张新, 刘鸿羽, 车昶, 等 . 钛合金低成本成形技术研究进展[J]. 铸造, 2021, 70(10): 1141-1148.
[34] Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools & Manufacture: Design, Research and Application, 2021, 170:103804.
[35] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J]. 中国激光, 2009, 36(12): 3204-3209.
[36] 付艳艳, 宋月清, 惠松骁, 等 . 航空用钛合金的研究与应用进展[J]. 稀有金属, 2006(6): 850-856.
[37] 毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状[J]. 稀有金属快报, 2007, 26(5): 1-7.
[38] 刘书惠. 航空用钛合金的失效及其预防[J]. 稀有金属快报, 2003, 22(10): 3.
[39] 王华明 . 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
[40] 刘业胜, 韩品连, 胡寿丰, 等 . 金属材料激光增材制造技术及在航空发动机上的应用[J]. 航空制造技术, 2014(10): 62-67.
[41] 蒋军杰 . 激光选区熔化成形 TA15钛合金工艺、组织演变与力学性能研究[D]. 重庆: 重庆大学, 2020.
[42] 张婷, 陈素明, 刘焕文 . TC4钛合金激光选区熔化制件与传统锻铸件的对比[J]. 科技创新导报, 2020, 17(36):91-93
[43] 顾冬冬, 张红梅, 陈洪宇, 等 . 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55.
[44] 唐思熠, 房立家, 孙兵兵, 等. 激光选区熔化Ti6Al4V的工艺参数优化与显微组织[J]. 焊接, 2019(10): 1-6.
[45] 左士刚 . TA15/TC17 异质材料激光增材修复组织与性能研究[D]. 沈阳: 沈阳航空航天大学, 2019.
[46] Zhao R, Chen C, Wang W, et al. On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy [J]. Additive Manufacturing, 2022, 51: 102605.
[47] Liu W, Chen C, Shuai S, et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography[J]. Materials Science and Engineering: A, 2020, 797: 139981.
[48] Mahamood R M, Akinlabi E T. Laser Metal deposition of Ti6Al4V/TiC composites using optimized process parameters[J]. Lasers in Engineering, 2016, 35(1/2/3/4):139-150.
[49] 梁朝阳, 张安峰, 梁少端, 等 . 高性能钛合金激光增材制造技术的研究进展[J]. 应用激光, 2017, 37(3): 452-458.
[50] 孙世杰 . 增材制造方法生产的 TiAl合金零件将被应用于飞机发动机涡轮叶片[J]. 粉末冶金工业, 2015, 25(1):65-66.
[51] 巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013(13): 66-71.
[52] 王强, 孙跃 . 增材制造技术在航空发动机中的应用[J].航空科学技术, 2014, 25(9): 6-10.
[53] 张超, 苏杰, 梁剑雄, 等 . 超高强度不锈钢沉淀行为研究进展[J]. 钢铁, 2018, 53(4): 48-61.
[54] Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition[J]. Acta Materialia, 2017, 129: 52-60.
[55] Wang L, Felicelli S D, Craig J E. Experimental and numerical study of the LENS rapid fabrication process[J].Journal of Manufacturing Science and Engineering,2009, 131(4): 041019.
[56] Yin S, Chen C Y, Yan X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel[J]. Additive Manufacturing, 2018, 22:592-600.
[57] Yao Y Z, Huang Y H, Chen B, et al. Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition[J]. Optics & Laser Technology, 2018, 105: 171-179.
[58] Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations[J]. International Journal of Machine Tools and Manufacture, 2019,141: 19-29.
[59] 金玉花, 金赟, 卢学天, 等 . 热处理对选区激光熔化18Ni300 成形组织性能的影响[J]. 应用激光, 2019, 39(3): 394.
[60] 郑步云, 陈鑫, 雷剑波, 等 . 热处理对激光熔化沉积18Ni300 马氏体时效钢微观组织和力学性能的影响[J/OL]. 表面技术, 2022, https://kns.cnki.net/kcms/detail/
50.1083.TG.20220513.1045.013.html.
[61] 刘振宝, 梁剑雄, 苏杰, 等 . 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[62] 王海霖, 赵占勇, 白培康, 等. SLM成形17-4PH高强钢组织与性能研究[J]. 特种铸造及有色合金, 2022, 41(12): 1559-1563.
[63] Yan X C, Chen C Y, Chang C, et al. Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM)[J]. Materials Science and Engineering: A, 2020, 781: 139227.
[64] 张伟, 姚建华, 董辰辉, 等 . 汽轮机叶片冲蚀区的激光修复与强化[J]. 动力工程, 2008, 28 (6): 967-971.
[65] 门正兴 . 工艺参数对激光选区熔化成形 18Ni300 钢冲击韧性的影响[J]. 锻压技术, 2022, 47(8): 123-129.
[66] Kim K S, Yang S, Kim M S, et al. Effect of post heattreatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting[J]. Journal of Materials Science & Technology, 2021, 76: 95-103.
[67] Tapoglou N, Clulow J, Patterson A, et al. Characterisation of mechanical properties of 15-5PH stainless steel manufactured through direct energy deposition[J]. CIRP Journal of Manufacturing Science and Technology, 2022,38: 172-185.
[68] 刘世锋, 魏钢, 王岩, 等. 增材制造17-4PH马氏体不锈钢研究进展[J]. 中国冶金, 2022, 32(6): 15-25.
[69] Wei S, Kumar P, Lau K B, et al. Effect of heat treatment on the microstructure and mechanical properties of 2.4 GPa grade maraging steel fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2022, 59:103190.
[70] Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel[J]. Physics Procedia, 2011, 12: 255-263.
[71] Huang W D. Research and development of laser additive manufacturing in northwestern polytechnical university[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando: Laser Institute of America,2009: 240-247.
[72] 常坤, 梁恩泉, 张韧, 等 . 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.
Outlines

/