[1] Mouritz A P. Introduction to aerospace materials[M]. Amsterdam: Elsevier, 2012.
[2] Schafrik R, Sprague R. Gas turbine materials[J]. Advanced Materials & Processes, 2004, 162(5): 29-34.
[3] DebRoy T, Wei H L, Zuback J S, et al. Additive manufacturing of metallic components: Process, structure and properties[J]. Progress in Materials Science, 2018, 92:112-224.
[4] 夏丹 . 增材制造技术的发展与挑战[J]. 现代农机, 2022(5): 122-124.
[5] Volpato G M, Tetzlaff U, Fredel M C. A comprehensive literature review on laser powder bed fusion of inconel superalloys[J]. Additive Manufacturing, 2022, 55: 102871.
[6] 王艺锰 . 定向能量沉积激光头一体化设计及3D打印制造[D]. 广州: 华南理工大学, 2020.
[7] Long H B, Mao S C , Liu Y N, et al. Microstructural and compositional design of Ni-based single crystalline superalloys―A review[J]. Journal of Alloys and Compounds,2018, 743: 203-220.
[8] Xia W S , Zhao X B, Yue L, et al. A review of composition evolution in Ni-based single crystal superalloys[J].Journal of Materials Science & Technology, 2020, 44: 76-95.
[9] Li Y, Liang X, Yu Y, et al. Review on additive manufacturing of single-crystal nickel-based superalloys[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2022, 1(1): 100019.
[10] Ikeda A, Goto K, Osada T, et al. High-throughput mapping method for mechanical properties, oxidation resistance, and phase stability in Ni-based superalloys using composition-graded unidirectional solidified alloys[J].Scripta Materialia, 2021, 193: 91-96.
[11] Xiao J H, Jiang W G, Han D Y, et al. Evolution of crystallographic orientation and microstructure in the triangular adapter of grain continuator of a 3rd-generation single crystal superalloy casting during directional solidification[J]. Journal of Alloys and Compounds, 2022,898: 162782.
[12] Tan C L, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools and Manufacture, 2021, 170: 103804.
[13] Aprilia A, Wu N E, Zhou W. Repair and restoration of engineering components by laser directed energy deposition[J]. Materials Today: Proceedings, 2022: 206-211.
[14] Gong G H, Ye J J, Chi Y M, et al. Research status of laser additive manufacturing for metal: A review[J]. Journal of Materials Research and Technology, 2021, 15:855-884.
[15] Moeinfar K, Khodabakhshi F, Kashani-bozorg S F, et al.A review on metallurgical aspects of laser additive manufacturing (LAM): Stainless steels, nickel superalloys,and titanium alloys[J]. Journal of Materials Research and Technology, 2022, 16: 1029-1068.
[16] 王迪, 钱泽宇, 窦文豪, 等 . 激光选区熔化成形高温镍基合金研究进展[J]. 航空制造技术, 2018, 61: 49-60.
[17] 刘泽程, 王国伟, 肖祥友, 等 . 选择性激光熔化镍基高温合金的工艺优化[J]. 粉末冶金技术, 2021, 39(1): 81-88.
[18] Wang R, Chen C Y, Liu M Y, et al. Effects of laser scanning speed and building direction on the microstructure and mechanical properties of selective laser melted Inconel 718 superalloy[J]. Materials Today Communications, 2022, 30: 103095.
[19] Zhang L, Li Y T, Zhang Q D, et al. Microstructure evolution, phase transformation and mechanical properties of IN738 superalloy fabricated by selective laser melting under different heat treatments[J]. Materials Science and Engineering: A, 2022, 844: 142947.
[20] Hang P Y, Zhou X, Zhang W Q, et al. Effects of meltpool geometry on the oriented to misoriented transition in directed energy deposition of a single-crystal superalloy[J]. Additive Manufacturing, 2022, 60: 103253.
[21] Basak A, Acharya R, Das S. Epitaxial deposition of nickel-based superalloy René 142 through scanning laser epitaxy (SLE)[J]. Additive Manufacturing, 2018, 22: 665-671.
[22] Chen H, Huang G S, Lu Y Y, et al. Epitaxial laser deposition of single crystal Ni-based superalloy: Variation of stray grains[J]. Materials Characterization, 2019, 158:109982.
[23] Chen Z G, Li W J, Wang L, et al. Investigation on the hot crack sensitivity of a nickel-based single crystal superalloy fabricated by epitaxial laser metal forming[J].Journal of Alloys and Compounds, 2023, 931: 167436.
[24] Lu N N, Lei Z L, Yu X F, et al. Effects of melt convection on stray grain formation in single crystal superalloys during directed energy deposition[J]. Additive Manufacturing, 2021, 48: 102429.
[25] Liu G, Du D, Wang K M, et al. Epitaxial growth behavior and stray grains formation mechanism during laser surface re-melting of directionally solidified nickelbased superalloys[J]. Journal of Alloys and Compounds,2021, 853: 157325.
[26] Hunt J D. Steady state columnar and equiaxed growth of dendrites and eutectic[J]. Materials Science and Engineering, 1984, 65: 75-83.
[27] Gäumann M, Trivedi R, Kurz W. Nucleation ahead of the advancing interface in directional solidfication[J].Materials Science and Engineering: A, 1997, 228: 763-769.
[28] Nie J W, Chen C Y, Liu L T, et al. Effect of substrate cooling on the epitaxial growth of Ni-based single-crystal superalloy fabricated by direct energy deposition[J].Journal of Materials Science & Technology, 2021, 62:148-161.
[29] 陈娇, 罗桦, 贺戬, 等 . 航天用镍基高温合金及其激光增材制造研究现状[J]. 精密成型工程, 2023, 15(1):156-169.
[30] 张红梅, 顾冬冬 . 激光增材制造镍基高温合金构件形性调控及在航空航天中的应用[J]. 电加工与模具, 2020(6): 10-24.
[31] Biffi C A, Lecis N, Previtali B, et al. Fiber laser microdrilling of titanium and its effect on material microstructure[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54: 149-160.
[32] Zaefferer S. A study of active deformation systems in titanium alloys: Dependence on alloy composition and correlation with deformation texture[J]. Materials Science & Engineering A, 2003, 344 (1/2): 20-30.
[33] 张新, 刘鸿羽, 车昶, 等 . 钛合金低成本成形技术研究进展[J]. 铸造, 2021, 70(10): 1141-1148.
[34] Tan C, Weng F, Sui S, et al. Progress and perspectives in laser additive manufacturing of key aeroengine materials[J]. International Journal of Machine Tools & Manufacture: Design, Research and Application, 2021, 170:103804.
[35] 王华明, 张述泉, 王向明. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J]. 中国激光, 2009, 36(12): 3204-3209.
[36] 付艳艳, 宋月清, 惠松骁, 等 . 航空用钛合金的研究与应用进展[J]. 稀有金属, 2006(6): 850-856.
[37] 毛小南, 赵永庆, 杨冠军. 国外航空发动机用钛合金的发展现状[J]. 稀有金属快报, 2007, 26(5): 1-7.
[38] 刘书惠. 航空用钛合金的失效及其预防[J]. 稀有金属快报, 2003, 22(10): 3.
[39] 王华明 . 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698.
[40] 刘业胜, 韩品连, 胡寿丰, 等 . 金属材料激光增材制造技术及在航空发动机上的应用[J]. 航空制造技术, 2014(10): 62-67.
[41] 蒋军杰 . 激光选区熔化成形 TA15钛合金工艺、组织演变与力学性能研究[D]. 重庆: 重庆大学, 2020.
[42] 张婷, 陈素明, 刘焕文 . TC4钛合金激光选区熔化制件与传统锻铸件的对比[J]. 科技创新导报, 2020, 17(36):91-93
[43] 顾冬冬, 张红梅, 陈洪宇, 等 . 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5): 32-55.
[44] 唐思熠, 房立家, 孙兵兵, 等. 激光选区熔化Ti6Al4V的工艺参数优化与显微组织[J]. 焊接, 2019(10): 1-6.
[45] 左士刚 . TA15/TC17 异质材料激光增材修复组织与性能研究[D]. 沈阳: 沈阳航空航天大学, 2019.
[46] Zhao R, Chen C, Wang W, et al. On the role of volumetric energy density in the microstructure and mechanical properties of laser powder bed fusion Ti-6Al-4V alloy [J]. Additive Manufacturing, 2022, 51: 102605.
[47] Liu W, Chen C, Shuai S, et al. Study of pore defect and mechanical properties in selective laser melted Ti6Al4V alloy based on X-ray computed tomography[J]. Materials Science and Engineering: A, 2020, 797: 139981.
[48] Mahamood R M, Akinlabi E T. Laser Metal deposition of Ti6Al4V/TiC composites using optimized process parameters[J]. Lasers in Engineering, 2016, 35(1/2/3/4):139-150.
[49] 梁朝阳, 张安峰, 梁少端, 等 . 高性能钛合金激光增材制造技术的研究进展[J]. 应用激光, 2017, 37(3): 452-458.
[50] 孙世杰 . 增材制造方法生产的 TiAl合金零件将被应用于飞机发动机涡轮叶片[J]. 粉末冶金工业, 2015, 25(1):65-66.
[51] 巩水利, 锁红波, 李怀学. 金属增材制造技术在航空领域的发展与应用[J]. 航空制造技术, 2013(13): 66-71.
[52] 王强, 孙跃 . 增材制造技术在航空发动机中的应用[J].航空科学技术, 2014, 25(9): 6-10.
[53] 张超, 苏杰, 梁剑雄, 等 . 超高强度不锈钢沉淀行为研究进展[J]. 钢铁, 2018, 53(4): 48-61.
[54] Kürnsteiner P, Wilms M B, Weisheit A, et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition[J]. Acta Materialia, 2017, 129: 52-60.
[55] Wang L, Felicelli S D, Craig J E. Experimental and numerical study of the LENS rapid fabrication process[J].Journal of Manufacturing Science and Engineering,2009, 131(4): 041019.
[56] Yin S, Chen C Y, Yan X C, et al. The influence of aging temperature and aging time on the mechanical and tribological properties of selective laser melted maraging 18Ni-300 steel[J]. Additive Manufacturing, 2018, 22:592-600.
[57] Yao Y Z, Huang Y H, Chen B, et al. Influence of processing parameters and heat treatment on the mechanical properties of 18Ni300 manufactured by laser based directed energy deposition[J]. Optics & Laser Technology, 2018, 105: 171-179.
[58] Tan C, Li S, Essa K, et al. Laser powder bed fusion of Ti-rich TiNi lattice structures: Process optimisation, geometrical integrity, and phase transformations[J]. International Journal of Machine Tools and Manufacture, 2019,141: 19-29.
[59] 金玉花, 金赟, 卢学天, 等 . 热处理对选区激光熔化18Ni300 成形组织性能的影响[J]. 应用激光, 2019, 39(3): 394.
[60] 郑步云, 陈鑫, 雷剑波, 等 . 热处理对激光熔化沉积18Ni300 马氏体时效钢微观组织和力学性能的影响[J/OL]. 表面技术, 2022, https://kns.cnki.net/kcms/detail/
50.1083.TG.20220513.1045.013.html.
[61] 刘振宝, 梁剑雄, 苏杰, 等 . 高强度不锈钢的研究及发展现状[J]. 金属学报, 2020, 56(4): 549-557.
[62] 王海霖, 赵占勇, 白培康, 等. SLM成形17-4PH高强钢组织与性能研究[J]. 特种铸造及有色合金, 2022, 41(12): 1559-1563.
[63] Yan X C, Chen C Y, Chang C, et al. Study of the microstructure and mechanical performance of C-X stainless steel processed by selective laser melting (SLM)[J]. Materials Science and Engineering: A, 2020, 781: 139227.
[64] 张伟, 姚建华, 董辰辉, 等 . 汽轮机叶片冲蚀区的激光修复与强化[J]. 动力工程, 2008, 28 (6): 967-971.
[65] 门正兴 . 工艺参数对激光选区熔化成形 18Ni300 钢冲击韧性的影响[J]. 锻压技术, 2022, 47(8): 123-129.
[66] Kim K S, Yang S, Kim M S, et al. Effect of post heattreatment on the microstructure and high-temperature oxidation behavior of precipitation hardened IN738LC superalloy fabricated by selective laser melting[J]. Journal of Materials Science & Technology, 2021, 76: 95-103.
[67] Tapoglou N, Clulow J, Patterson A, et al. Characterisation of mechanical properties of 15-5PH stainless steel manufactured through direct energy deposition[J]. CIRP Journal of Manufacturing Science and Technology, 2022,38: 172-185.
[68] 刘世锋, 魏钢, 王岩, 等. 增材制造17-4PH马氏体不锈钢研究进展[J]. 中国冶金, 2022, 32(6): 15-25.
[69] Wei S, Kumar P, Lau K B, et al. Effect of heat treatment on the microstructure and mechanical properties of 2.4 GPa grade maraging steel fabricated by laser powder bed fusion[J]. Additive Manufacturing, 2022, 59:103190.
[70] Kempen K, Yasa E, Thijs L, et al. Microstructure and mechanical properties of Selective Laser Melted 18Ni-300 steel[J]. Physics Procedia, 2011, 12: 255-263.
[71] Huang W D. Research and development of laser additive manufacturing in northwestern polytechnical university[C]//International Congress on Applications of Lasers & Electro-Optics. Orlando: Laser Institute of America,2009: 240-247.
[72] 常坤, 梁恩泉, 张韧, 等 . 金属材料增材制造及其在民用航空领域的应用研究现状[J]. 材料导报, 2021, 35(3): 3176-3182.