Reviews

An overview of mixed ion-electron conducting (MIEC) perovskite oxides for solid oxide fuel cell (SOFC) cathode materials and relevant research in 2022

  • YU Yu ,
  • LI Ming ,
  • CHEN George Zheng
Expand
  • 1. Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK 
    2. Almath Crucibles Ltd., Cambridge CB8 9NE, UK

Received date: 2022-12-29

  Revised date: 2023-01-17

  Online published: 2023-04-23

Abstract

This article offers a brief introduction of mixed ion-electron conducting (MIEC) perovskite oxides for applications as the cathode material of solid oxide fuel cells, including basic working principle, material synthesis and processing approaches, and electrical and electrochemical characterisation techniques. An overview of the relevant research in 2022 is also presented, mainly focusing on (1) MIEC perovskite oxide surface engineering; (2) new MIEC perovskite oxides with improved stability and high catalytic activity towards oxygen reduction reaction; (3) synthesis and fabrication technique developments.

Cite this article

YU Yu , LI Ming , CHEN George Zheng . An overview of mixed ion-electron conducting (MIEC) perovskite oxides for solid oxide fuel cell (SOFC) cathode materials and relevant research in 2022[J]. Science & Technology Review, 2023 , 41(6) : 74 -88 . DOI: 10.3981/j.issn.1000-7857.2023.06.009

References

[1] Obayashi H, Kudo T. Perovskite-type compounds as electrode catalysts for cathodic reduction of oxygen[J]. Materials Research Bulletin, 1978, 13(12): 1409-1413.
[2] Möbius H H. On the history of solid electrolyte fuel cells [J]. Journal of Solid State Electrochemistry, 1997, 1(1): 2-16.
[3] Tedmon C S, Spacil H S, Mitoff S P. Cathode materials and performance in high ⁃temperature zirconia electrolyte fuel cells[J]. Journal of The Electrochemical Society, 1969, 116(9): 1170-1175.
[4] Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173.
[5] Zhang K, Sunarso J, Shao Z, et al. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production [J]. RSC Advances, 2011, 1(9): 1661-1676.
[6] Chen G, Feldhoff A, Weidenkaff A, et al. Roadmap for sustainable mixed ionic-electronic conducting membranes [J]. Advanced Functional Materials, 2022, 32(6): 2105702.
[7] Shu L, Sunarso J, Hashim S S, et al. Advanced perovskite anodes for solid oxide fuel cells: A review[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31275-31304.
[8] Zhu X, Yang W. Catalytic reactions in miec membrane reactors, in mixed conducting ceramic membranes: Fundamentals, materials and applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.
[9] Chen C S, Kruidhof H, Bouwmeester H J M, et al. Thickness dependence of oxygen permeation through erbiastabilized bismuth oxide-silver composites[J]. Solid State Ionics, 1997, 99(3): 215-219.
[10] Goldschmidt V M. Die gesetze der krystallochemie[J].Naturwissenschaften, 1926, 14(21): 477-485.
[11] Manthiram A, Kim J H, Kim Y N, et al. Crystal chemistry and properties of mixed ionic-electronic conductors [J]. Journal of Electroceramics, 2011, 27(2): 93-107.
[12] Richter J, Holtappels P, Graule T, et al. Materials design for perovskite sofc cathodes[J]. Monatshefte für Chemie-Chemical Monthly, 2009, 140(9): 985-999.
[13] Kilner J A, Brook R J. A study of oxygen ion conductivity in doped non-stoichiometric oxides[J]. Solid State Ionics, 1982, 6(3): 237-252.
[14] Skinner S J, Kilner J A. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ[J]. Solid State Ionics, 2000, 135 (1): 709-712.
[15] Oh D, Gostovic D, Wachsman E D. Mechanism of La0.6Sr0.4Co0.2Fe0.8 O3 cathode degradation[J]. Journal of Materials Research, 2012, 27(15): 1992-1999.
[16] Li M, Niu H, Druce J, et al. A CO2-tolerant perovskite oxide with high oxide ion and electronic conductivity[J].Advanced Materials, 2020, 32(4): 1905200.
[17] Gao W, Sammes N M. An introduction to electronic and ionic materials[M]. Singapore: World Scientific, 1999.
[18] Sammells A F, Cook R L, White J H, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ionics, 1992, 52(1):111-123.
[19] Cherry M, Islam M S, Catlow C R A. Oxygen ion migration in perovskite-type oxides[J]. Journal of Solid State Chemistry, 1995, 118(1): 125-132.
[20] Islam M S. Computer modelling of defects and transport in perovskite oxides[J]. Solid State Ionics, 2002, 154-155: 75-85.
[21] Kharton V V, Kovalevsky A V, Viskup A P, et al. Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes[J]. Solid State Ionics, 2003, 160(3): 247-258.
[22] Dabrowiak J C. Metals in medicine[M]. New Jersey, United States: John Wiley & Sons, 2017.
[23] Shimakawa Y, Azuma M, Ichikawa N. Multiferroic compounds with double-perovskite structures[J]. Materials, 2011, 4(1): 153-168.
[24] Bucher E, Sitte W, Klauser F, et al. Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600°C in dry and humid atmospheres[J]. Solid State Ionics, 2011, 191(1): 61-67.
[25] Zhou W, Ran R, Shao Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review[J]. Journal of Power Sources, 2009, 192(2): 231-246.
[26] Wachsman E, Ishihara T, Kilner J. Low-temperature solid-oxide fuel cells[J]. MRS Bulletin, 2014, 39(9): 773-779.
[27] Jacobson A J. Materials for solid oxide fuel cells[J]. Chemistry of Materials, 2010, 22(3): 660-674.
[28] Brichzin V, Fleig J, Habermeier H U, et al. The geometry dependence of the polarization resistance of Srdoped LaMnO3 microelectrodes on yttria-stabilized zirconia[J]. Solid State Ionics, 2002, 152-153: 499-507.
[29] Wang L, Merkle R, Mastrikov Y A, et al. Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation[J].Journal of Materials Research, 2012, 27(15): 2000-2008.
[30] Schmalzried H. Solid-state reactions, in Treatise on solid state chemistry: Volume 4 reactivity of solids[M]. Boston, United States: Springer US, 1976.
[31] Yogo T. Powder and thin film synthesis, in Materials Chemistry of Ceramics, J. Hojo Ed[M]. Singapore: Springer Singapore, 2019.
[32] Suchanek W L, Riman R E. Hydrothermal synthesis of advanced ceramic powders[J]. Advances in Science and Technology, 2006, 45: 184-193.
[33] Serra J M, Garcia-Fayos J, Baumann S, et al. Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes[J]. Journal of Membrane Science, 2013, 447: 297-305.
[34] Tong X, Ovtar S, Brodersen K, et al. Large-area solid oxide cells with La0.6Sr0.4CoO3-δ infiltrated oxygen electrodes for electricity generation and hydrogen production [J]. Journal of Power Sources, 2020, 451: 227742.
[35] Badwal S P S, Ciacchi F T, Ho D V. A fully automated four-probe d. c. conductivity technique for investigating solid electrolytes[J]. Journal of Applied Electrochemistry, 1991, 21(8): 721-728.
[36] Chen D, Shao Z. Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor[J]. International Journal of Hydrogen Energy, 2011, 36(11):6948-6956.
[37] Zeng P, Ran R, Chen Z, et al. Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol-gel synthesis[J]. Journal of Alloys and Compounds, 2008, 455(1): 465-470.
[38] Wang L, Merkle R, Maier J, et al. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films[J]. Applied Physics Letters, 2009, 94(7): 071908.
[39] Huang Y, Qiu R, Lian W, et al. Review: Measurement of partial electrical conductivities and transport numbers of mixed ionic-electronic conducting oxides[J]. Journal of Power Sources, 2022, 528: 231201.
[40] Druce J, Téllez H, Burriel M, et al. Surface termination and subsurfacer restructuring of perovskite-based solid oxide electrode materials[J]. Energy & Environmental Science 2014, 7(11): 3593-3599.
[41] Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nature Catalysis, 2022, 5(4):
300-310.
[42] He G, Lan Q, Liu M, et al. Multilayered ceramic membrane with ion conducting thin layer induced by interface reaction for stable hydrogen production[J]. Angewandte Chemie International Edition, 2022: e202210485.
[43] Pei K, Zhou Y, Xu K, et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells[J]. Nature Communications,2022, 13(1): 2207.
[44] Zhang B W, Zhu M N, Gao M R, et al. Boosting the stability of perovskites with exsolved nanoparticles by Bsite supplement mechanism[J]. Nature Communications,2022, 13(1): 4618.
[45] He G, Lan Q, Sohn Y J, et al. Temperature-induced structural reorganization of W-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membranes for air separation[J]. Chemistry of Materials, 2019, 31(18): 7487-7492.
[46] Hu D, Dawson K, Zanella M, et al. Enhanced long-term cathode stability by tuning interfacial nanocomposite for intermediate temperature solid oxide fuel cells[J]. Advanced Materials Interfaces, 2022, 9(14): 2102131.
[47] Jacobs R, Liu J, Na B T, et al. Unconventional highly active and stable oxygen reduction catalysts informed by computational design strategies[J]. Advanced Energy Materials, 2022, 12(25): 2201203.
[48] Zhai S, Xie H, Cui P, et al. A combined ionic lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells[J]. Nature Energy, 2022, 7(9): 866-875.
[49] Papac M, Stevanović V, Zakutayev A, et al. Triple ionicelectronic conducting oxides for next-generation electrochemical devices[J]. Nature Materials, 2021, 20(3): 301-313.
[50] Bello I T, Yu N, Song Y, et al. Electrokinetic insights into the triple ionic and electronic conductivity of a novel nanocomposite functional material for protonic ceramic fuel cells[J]. Small, 2022, 18(40): 2203207.
[51] Zvonareva I, Fu X Z, Medvedev D, et al. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes[J]. Energy & Environmental Science, 2022, 15: 439-465.
[52] Cao J, Ji Y, Shao Z. Perovskites for protonic ceramic fuel cells: A review[J]. Energy & Environmental Science,2022, 15: 2200-2232.
[53] Tsvetkov N, Kim D, Jeong I, et al. Advances in materials and interface understanding in protonic ceramic fuel cells[J]. Advanced Materials Technologies, 2022:2201075.
[54] Wang Z, Wang Y, Wang J, et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes[J]. Nature Catalysis, 2022, 5(9):777-787.
[55] Liang F, Tseng P, Sun Q, et al. Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells[J]. Journal of Colloid and Interface Science, 2022, 607: 53-60.
[56] Dey S, Sharma A D, Mukhopadhyay J. Effect of oxygen non-stoichiometry and redox phenomena in La/Ba-Sr-Co-Fe-O-based perovskite systems and its heterostructure as applicable in solid oxide cell (SOC) air electrode [J]. Ceramics International, 2022, 48(23): 35799-35813.

Outlines

/