An overview of mixed ion-electron conducting (MIEC) perovskite oxides for solid oxide fuel cell (SOFC) cathode materials and relevant research in 2022
Received date: 2022-12-29
Revised date: 2023-01-17
Online published: 2023-04-23
YU Yu , LI Ming , CHEN George Zheng . An overview of mixed ion-electron conducting (MIEC) perovskite oxides for solid oxide fuel cell (SOFC) cathode materials and relevant research in 2022[J]. Science & Technology Review, 2023 , 41(6) : 74 -88 . DOI: 10.3981/j.issn.1000-7857.2023.06.009
[1] Obayashi H, Kudo T. Perovskite-type compounds as electrode catalysts for cathodic reduction of oxygen[J]. Materials Research Bulletin, 1978, 13(12): 1409-1413.
[2] Möbius H H. On the history of solid electrolyte fuel cells [J]. Journal of Solid State Electrochemistry, 1997, 1(1): 2-16.
[3] Tedmon C S, Spacil H S, Mitoff S P. Cathode materials and performance in high ⁃temperature zirconia electrolyte fuel cells[J]. Journal of The Electrochemical Society, 1969, 116(9): 1170-1175.
[4] Shao Z, Haile S M. A high-performance cathode for the next generation of solid-oxide fuel cells[J]. Nature, 2004, 431: 170-173.
[5] Zhang K, Sunarso J, Shao Z, et al. Research progress and materials selection guidelines on mixed conducting perovskite-type ceramic membranes for oxygen production [J]. RSC Advances, 2011, 1(9): 1661-1676.
[6] Chen G, Feldhoff A, Weidenkaff A, et al. Roadmap for sustainable mixed ionic-electronic conducting membranes [J]. Advanced Functional Materials, 2022, 32(6): 2105702.
[7] Shu L, Sunarso J, Hashim S S, et al. Advanced perovskite anodes for solid oxide fuel cells: A review[J]. International Journal of Hydrogen Energy, 2019, 44(59): 31275-31304.
[8] Zhu X, Yang W. Catalytic reactions in miec membrane reactors, in mixed conducting ceramic membranes: Fundamentals, materials and applications[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017.
[9] Chen C S, Kruidhof H, Bouwmeester H J M, et al. Thickness dependence of oxygen permeation through erbiastabilized bismuth oxide-silver composites[J]. Solid State Ionics, 1997, 99(3): 215-219.
[10] Goldschmidt V M. Die gesetze der krystallochemie[J].Naturwissenschaften, 1926, 14(21): 477-485.
[11] Manthiram A, Kim J H, Kim Y N, et al. Crystal chemistry and properties of mixed ionic-electronic conductors [J]. Journal of Electroceramics, 2011, 27(2): 93-107.
[12] Richter J, Holtappels P, Graule T, et al. Materials design for perovskite sofc cathodes[J]. Monatshefte für Chemie-Chemical Monthly, 2009, 140(9): 985-999.
[13] Kilner J A, Brook R J. A study of oxygen ion conductivity in doped non-stoichiometric oxides[J]. Solid State Ionics, 1982, 6(3): 237-252.
[14] Skinner S J, Kilner J A. Oxygen diffusion and surface exchange in La2−xSrxNiO4+δ[J]. Solid State Ionics, 2000, 135 (1): 709-712.
[15] Oh D, Gostovic D, Wachsman E D. Mechanism of La0.6Sr0.4Co0.2Fe0.8 O3 cathode degradation[J]. Journal of Materials Research, 2012, 27(15): 1992-1999.
[16] Li M, Niu H, Druce J, et al. A CO2-tolerant perovskite oxide with high oxide ion and electronic conductivity[J].Advanced Materials, 2020, 32(4): 1905200.
[17] Gao W, Sammes N M. An introduction to electronic and ionic materials[M]. Singapore: World Scientific, 1999.
[18] Sammells A F, Cook R L, White J H, et al. Rational selection of advanced solid electrolytes for intermediate temperature fuel cells[J]. Solid State Ionics, 1992, 52(1):111-123.
[19] Cherry M, Islam M S, Catlow C R A. Oxygen ion migration in perovskite-type oxides[J]. Journal of Solid State Chemistry, 1995, 118(1): 125-132.
[20] Islam M S. Computer modelling of defects and transport in perovskite oxides[J]. Solid State Ionics, 2002, 154-155: 75-85.
[21] Kharton V V, Kovalevsky A V, Viskup A P, et al. Oxygen transport in Ce0.8Gd0.2O2−δ-based composite membranes[J]. Solid State Ionics, 2003, 160(3): 247-258.
[22] Dabrowiak J C. Metals in medicine[M]. New Jersey, United States: John Wiley & Sons, 2017.
[23] Shimakawa Y, Azuma M, Ichikawa N. Multiferroic compounds with double-perovskite structures[J]. Materials, 2011, 4(1): 153-168.
[24] Bucher E, Sitte W, Klauser F, et al. Oxygen exchange kinetics of La0.58Sr0.4Co0.2Fe0.8O3 at 600°C in dry and humid atmospheres[J]. Solid State Ionics, 2011, 191(1): 61-67.
[25] Zhou W, Ran R, Shao Z. Progress in understanding and development of Ba0.5Sr0.5Co0.8Fe0.2O3−δ-based cathodes for intermediate-temperature solid-oxide fuel cells: A review[J]. Journal of Power Sources, 2009, 192(2): 231-246.
[26] Wachsman E, Ishihara T, Kilner J. Low-temperature solid-oxide fuel cells[J]. MRS Bulletin, 2014, 39(9): 773-779.
[27] Jacobson A J. Materials for solid oxide fuel cells[J]. Chemistry of Materials, 2010, 22(3): 660-674.
[28] Brichzin V, Fleig J, Habermeier H U, et al. The geometry dependence of the polarization resistance of Srdoped LaMnO3 microelectrodes on yttria-stabilized zirconia[J]. Solid State Ionics, 2002, 152-153: 499-507.
[29] Wang L, Merkle R, Mastrikov Y A, et al. Oxygen exchange kinetics on solid oxide fuel cell cathode materials—general trends and their mechanistic interpretation[J].Journal of Materials Research, 2012, 27(15): 2000-2008.
[30] Schmalzried H. Solid-state reactions, in Treatise on solid state chemistry: Volume 4 reactivity of solids[M]. Boston, United States: Springer US, 1976.
[31] Yogo T. Powder and thin film synthesis, in Materials Chemistry of Ceramics, J. Hojo Ed[M]. Singapore: Springer Singapore, 2019.
[32] Suchanek W L, Riman R E. Hydrothermal synthesis of advanced ceramic powders[J]. Advances in Science and Technology, 2006, 45: 184-193.
[33] Serra J M, Garcia-Fayos J, Baumann S, et al. Oxygen permeation through tape-cast asymmetric all-La0.6Sr0.4Co0.2Fe0.8O3−δ membranes[J]. Journal of Membrane Science, 2013, 447: 297-305.
[34] Tong X, Ovtar S, Brodersen K, et al. Large-area solid oxide cells with La0.6Sr0.4CoO3-δ infiltrated oxygen electrodes for electricity generation and hydrogen production [J]. Journal of Power Sources, 2020, 451: 227742.
[35] Badwal S P S, Ciacchi F T, Ho D V. A fully automated four-probe d. c. conductivity technique for investigating solid electrolytes[J]. Journal of Applied Electrochemistry, 1991, 21(8): 721-728.
[36] Chen D, Shao Z. Surface exchange and bulk diffusion properties of Ba0.5Sr0.5Co0.8Fe0.2O3−δ mixed conductor[J]. International Journal of Hydrogen Energy, 2011, 36(11):6948-6956.
[37] Zeng P, Ran R, Chen Z, et al. Efficient stabilization of cubic perovskite SrCoO3−δ by B-site low concentration scandium doping combined with sol-gel synthesis[J]. Journal of Alloys and Compounds, 2008, 455(1): 465-470.
[38] Wang L, Merkle R, Maier J, et al. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films[J]. Applied Physics Letters, 2009, 94(7): 071908.
[39] Huang Y, Qiu R, Lian W, et al. Review: Measurement of partial electrical conductivities and transport numbers of mixed ionic-electronic conducting oxides[J]. Journal of Power Sources, 2022, 528: 231201.
[40] Druce J, Téllez H, Burriel M, et al. Surface termination and subsurfacer restructuring of perovskite-based solid oxide electrode materials[J]. Energy & Environmental Science 2014, 7(11): 3593-3599.
[41] Zhuang Z, Li Y, Yu R, et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes[J]. Nature Catalysis, 2022, 5(4):
300-310.
[42] He G, Lan Q, Liu M, et al. Multilayered ceramic membrane with ion conducting thin layer induced by interface reaction for stable hydrogen production[J]. Angewandte Chemie International Edition, 2022: e202210485.
[43] Pei K, Zhou Y, Xu K, et al. Surface restructuring of a perovskite-type air electrode for reversible protonic ceramic electrochemical cells[J]. Nature Communications,2022, 13(1): 2207.
[44] Zhang B W, Zhu M N, Gao M R, et al. Boosting the stability of perovskites with exsolved nanoparticles by Bsite supplement mechanism[J]. Nature Communications,2022, 13(1): 4618.
[45] He G, Lan Q, Sohn Y J, et al. Temperature-induced structural reorganization of W-doped Ba0.5Sr0.5Co0.8Fe0.2O3−δ composite membranes for air separation[J]. Chemistry of Materials, 2019, 31(18): 7487-7492.
[46] Hu D, Dawson K, Zanella M, et al. Enhanced long-term cathode stability by tuning interfacial nanocomposite for intermediate temperature solid oxide fuel cells[J]. Advanced Materials Interfaces, 2022, 9(14): 2102131.
[47] Jacobs R, Liu J, Na B T, et al. Unconventional highly active and stable oxygen reduction catalysts informed by computational design strategies[J]. Advanced Energy Materials, 2022, 12(25): 2201203.
[48] Zhai S, Xie H, Cui P, et al. A combined ionic lewis acid descriptor and machine-learning approach to prediction of efficient oxygen reduction electrodes for ceramic fuel cells[J]. Nature Energy, 2022, 7(9): 866-875.
[49] Papac M, Stevanović V, Zakutayev A, et al. Triple ionicelectronic conducting oxides for next-generation electrochemical devices[J]. Nature Materials, 2021, 20(3): 301-313.
[50] Bello I T, Yu N, Song Y, et al. Electrokinetic insights into the triple ionic and electronic conductivity of a novel nanocomposite functional material for protonic ceramic fuel cells[J]. Small, 2022, 18(40): 2203207.
[51] Zvonareva I, Fu X Z, Medvedev D, et al. Electrochemistry and energy conversion features of protonic ceramic cells with mixed ionic-electronic electrolytes[J]. Energy & Environmental Science, 2022, 15: 439-465.
[52] Cao J, Ji Y, Shao Z. Perovskites for protonic ceramic fuel cells: A review[J]. Energy & Environmental Science,2022, 15: 2200-2232.
[53] Tsvetkov N, Kim D, Jeong I, et al. Advances in materials and interface understanding in protonic ceramic fuel cells[J]. Advanced Materials Technologies, 2022:2201075.
[54] Wang Z, Wang Y, Wang J, et al. Rational design of perovskite ferrites as high-performance proton-conducting fuel cell cathodes[J]. Nature Catalysis, 2022, 5(9):777-787.
[55] Liang F, Tseng P, Sun Q, et al. Microwave plasma rapid heating towards robust cathode/electrolyte interface for solid oxide fuel cells[J]. Journal of Colloid and Interface Science, 2022, 607: 53-60.
[56] Dey S, Sharma A D, Mukhopadhyay J. Effect of oxygen non-stoichiometry and redox phenomena in La/Ba-Sr-Co-Fe-O-based perovskite systems and its heterostructure as applicable in solid oxide cell (SOC) air electrode [J]. Ceramics International, 2022, 48(23): 35799-35813.
/
〈 |
|
〉 |