Reviews

SPARC Phase II: Focusing on the vagus nerve

  • XIN Chen ,
  • RONG Peijing ,
  • LI Shaoyuan ,
  • WANG Yu ,
  • CHEN Yu ,
  • CHEN Jiande ,
  • WEI Wei ,
  • CONG Bin
Expand
  • 1. Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing 100700, China
    2. Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor 48109, USA
    3. Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
    4. Department of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, China

Received date: 2022-05-28

  Revised date: 2022-12-02

  Online published: 2023-04-23

Abstract

"Stimulating Peripheral Activity to Relieve Conditions" program (SPARC), which was initiated by the National Institutes of Health (NIH) in 2016, has been proceed to the next stage in 2022. Compared with the first stage, which focused on the peripheral nervous system as a whole, the most important feature of the SPARC Phase II is its focus on the vagus nerve. This paper explores the reasons for the focus of Phase II by sorting out the current status of the clinical application of vagus nerve stimulation (VNS), the vagus nerve and inflammatory reflexes, and the vagus nerve and the introception system. More importantly, the identification and study paradigm of vagal sensory neurons is enlightening and informative to reveal the mechanism of acupuncture acting on the body's surface and visceral organs.

Cite this article

XIN Chen , RONG Peijing , LI Shaoyuan , WANG Yu , CHEN Yu , CHEN Jiande , WEI Wei , CONG Bin . SPARC Phase II: Focusing on the vagus nerve[J]. Science & Technology Review, 2023 , 41(6) : 121 -126 . DOI: 10.3981/j.issn.1000-7857.2023.06.012

References

[1] 马思明, 杨娜娜, 范浩, 等. 美国SPARC计划对中医针灸研究的挑战与启发[J]. 中国针灸, 2020, 40(4): 439-442.
[2] 宋思敏, 刘阳阳, 郭义, 等. 美国外周神经刺激对针灸发展模式的启示[J]. 山东中医杂志, 2019, 38(8): 721-724.
[3] 王晓宇, 于清泉, 何伟, 等 . 从“分子药”到“电子药”:SPARC计划和针刺研究[J]. 针刺研究, 2019, 44(3): 157-160.
[4] Famm K, Litt B, Tracey K J, et al. Drug discovery: A jump-start for electroceuticals[J]. Nature, 2013, 496(7444): 159-161.
[5] Birmingham K, Gradinaru V, Anikeeva P, et al. Bioelectronic medicines: A research roadmap[J]. Nature Reviews Drug Discovery, 2014, 13(6): 399-400.
[6] Dugan P, Devinsky O. Epilepsy: Guidelines on vagus nerve stimulation for epilepsy[J]. Nature Reviews Neurology, 2013, 9(11): 611-612.
[7] Austelle C W, O'Leary G H, Thompson S, et al. A comprehensive review of vagus nerve stimulation for depression[J]. Neuromodulation, 2022, 25(3): 309-315.
[8] Goggins E, Mitani S, Tanaka S. Clinical perspectives on vagus nerve stimulation: Present and future[J]. Clinical Science, 2022, 136(9): 695-709.
[9] Rosso P, Iannitelli A, Pacitti F, et al. Vagus nerve stimulation and neurotrophins: A biological psychiatric perspective[J]. Neuroscience and Biobehavioral Reviews, 2020, 113: 338-353.
[10] Schwartz P J, de Ferrari G M, Sanzo A, et al. Long term vagal stimulation in patients with advanced heart failure: First experience in man[J]. European Journal of Heart Failure, 2008, 10(9): 884-891.
[11] Ikramuddin S, Blackstone R P, Brancatisano A, et al. Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: The ReCharge randomized clinical trial[J]. Journal of the American Medical Association, 2014, 312(9): 915-922.
[12] Yao G, Kang L, Li J, et al. Effective weight control via an implanted self-powered vagus nerve stimulation device[J]. Nature Communications, 2018, 9(1): 5349.
[13] Val-Laillet D, Biraben A, Randuineau G, et al. Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs[J]. Appetite, 2010, 55(2): 245-252.
[14] Wang Y, Li S Y, Wang D, et al. Transcutaneous auricular vagus nerve stimulation: From concept to application[J]. Neuroscience Bulletin, 2021, 37(6): 853-862.
[15] Wang L, Wang Y, Wang Y, et al. Transcutaneous auricular vagus nerve stimulators: A review of past, present, and future devices[J]. Expert Review of Medical Devices, 2022, 19(1): 43-61.
[16] VanderPluym J H, Halker Singh R B, Urtecho M, et al. Acute treatments for episodic migraine in adults: A systematic review and meta-analysis[J]. Journal of the American Medical Association, 2021, 325(23): 2357-2369.
[17] Schindler E, Burish M J. Recent advances in the diagnosis and management of cluster headache[J]. British Medical Journal, 2022, 376: e059577.
[18] Horbach T, Thalheimer A, Seyfried F, et al. Abiliti closed-loop gastric electrical stimulation system for treatment of obesity: Clinical results with a 27-month follow-up[J]. Obesity Surgery, 2015, 25(10): 1779-1787.
[19] Apovian C M, Shah S N, Wolfe B M, et al. Two-year outcomes of vagal nerve blocking (vbloc) for the treatment of obesity in the recharge trial[J]. Obesity Surgery, 2017, 27(1): 169-176.
[20] Tracey K J. The inflammatory reflex[J]. Nature, 2002,420(6917): 853-859.
[21] Borovikova L V, Ivanova S, Zhang M, et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin[J]. Nature, 2000, 405(6785): 458-462.
[22] Bernik T R, Friedman S G, Ochani M, et al. Pharmacological stimulation of the cholinergic antiinflammatory pathway[J]. Journal of Experimental Medicine, 2002, 195(6): 781-788.
[23] Martelli D, Yao S T, McKinley M J, et al. Reflex control of inflammation by sympathetic nerves, not the vagus[J]. The Journal of Physiology, 2014, 592(7): 1677-1686.
[24] Komegae E N, Farmer D, Brooks V L, et al. Vagal afferent activation suppresses systemic inflammation via the splanchnic anti-inflammatory pathway[J]. Brain, behavior, and immunity, 2018, 73: 441-449.
[25] Bonaz B, Sinniger V, Pellissier S. Anti-inflammatory properties of the vagus nerve: Potential therapeutic implications of vagus nerve stimulation[J]. The Journal of Physiology, 2016, 594(20): 5781-5790.
[26] Udit S, Blake K, Chiu I M. Somatosensory and autonomic neuronal regulation of the immune response[J]. Nature Reviews Neuroscience, 2022, 23(3): 157-171.
[27] Wang J Y, Zhang Y, Chen Y, et al. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF- κB signal pathway[J]. Journal of Neuroinflammation, 2021, 18(1): 291.
[28] Pavlov V A, Tracey K J. The vagus nerve and the inflammatory reflex-linking immunity and metabolism[J]. Nature Reviews Endocrinology, 2012, 8(12): 743-754.
[29] Chen W G, Schloesser D, Arensdorf A M, et al. The emerging science of interoception: Sensing, integrating, interpreting, and regulating signals within the self[J]. Trends in Neurosciences, 2021, 44(1): 3-16.
[30] Prescott S L, Liberles S D. Internal senses of the vagus nerve[J]. Neuron, 2022, 110(4): 579-599.
[31] Berntson G G, Khalsa S S. Neural circuits of interoception[J]. Trends in Neurosciences, 2021, 44(1): 17-28.
[32] Min S, Chang R B, Prescott S L, et al. Arterial baroreceptors sense blood pressure through decorated aortic claws[J]. Cell Reports, 2019, 29(8): 2192-2201.e3.
[33] Hajishafiee M, Bitarafan V, Feinle-Bisset C. Gastrointestinal sensing of meal-related signals in humans, and dysregulations in eating-related disorders[J]. Nutrients, 2019, 11(6): 1298.
[34] Terry N, Margolis K G. Serotonergic mechanisms regulating the gi tract: Experimental evidence and therapeutic relevance[J]. Handbook of Experimental Pharmacology, 2017, 239: 319-342.
[35] Zhao Q, Yu C D, Wang R, et al. A multidimensional coding architecture of the vagal interoceptive system[J]. Nature, 2022, 603(7903): 878-884.
[36] Weng H Y, Feldman J L, Leggio L, et al. Interventions and manipulations of interoception[J]. Trends in Neurosciences, 2021, 44(1): 52-62.
[37] Torres-Rosas R, Yehia G, Peña G, et al. Dopamine mediates vagal modulation of the immune system by electroacupuncture[J]. Nature Medicine, 2014, 20(3): 291-295.
[38] Liu S, Wang Z, Su Y, et al. A neuroanatomical basis for electroacupuncture to drive the vagal-adrenal axis[J]. Nature, 2021, 598(7882): 641-645.
[39] Ulloa L. Electroacupuncture activates neurons to switch off inflammation[J]. Nature, 2021, 598(7882): 573-574.
[40] Ulloa L, Quiroz-Gonzalez S, Torres-Rosas R. Nerve stimulation: Immunomodulation and control of inflammation[J]. Trends in Molecular Medicine, 2017, 23(12): 1103-1120.
[41] Sharma N, Flaherty K, Lezgiyeva K, et al. The emergence of transcriptional identity in somatosensory neurons[J]. Nature, 2020, 577(7790): 392-398.

Outlines

/