[1] 林巍, 李一良, 王高鸿, 等. 天体生物学研究进展和发展趋势[J]. 科学通报, 2020, 65(5): 380-391.
[2] Liu J, Zhang W S, He K, et al. Survival of the magnetotactic bacterium Magnetospirillum gryphiswaldense exposed to Earth's lower near space[J]. Science Bulletin, 2022, doi: 10.1016/j.scib.2022.03.005.
[3] 林巍 . 临近空间生物研究及其天体生物学意义[J]. 科学通报, 2020, 65(14): 1297-1304.
[4] Shen J X, Wyness A J, Claire M W, et al. Spatial variability of microbial communities and salt distributions across a latitudinal aridity gradient in the Atacama Desert[J]. Microbial Ecology, 2021, 82(2): 442-458.
[5] Navarro-Gonzalez R, Rainey F A, Molina P, et al. Mars like soils in the Atacama Desert, Chile, and the dry limit of microbial life[J]. Science, 2003, 302(5647): 1018-1021.
[6] Anglés A, Li Y L. The western Qaidam Basin as a potential Martian environmental analogue: An overview[J]. Journal of Geophysical Research-Planets, 2017, 122(5): 856-888.
[7] Xiao L, Wang J, Dang Y N, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China) [J]. Earth-Science Reviews, 2017, 164: 84-101.
[8] Martins Z, Cottin H, Kotler J M, et al. Earth as a tool for astrobiology—A European perspective[J]. Space Science Reviews, 2017, 209(1): 43-81.
[9] Schuerger A C, Fajardo-Cavazos P, Clausen C A, et al. Slow degradation of ATP in simulated martian environments suggests long residence times for the biosignature molecule on spacecraft surfaces on Mars[J]. Icarus, 2008, 194(1): 86-100.
[10] Godin P J, Schuerger A C, Moores J E. Salt tolerance and UV protection of Bacillus subtilis and Enterococcus faecalis under simulated martian conditions[J]. Astrobiology, 2021, 21(4): 394-404.
[11] dos Santos R, Patel M, Cuadros J, et al. Influence of mineralogy on the preservation of amino acids under simulated Mars conditions[J]. Icarus, 2016, 277: 342-353.
[12] Dartnell L R, Patel M R. Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars[J]. International Journal of Astrobiology, 2014, 13(2): 112-123.
[13] Lorek A, Koncz A. Simulation and measurement of extraterrestrial conditions for experiments on habitability with respect to Mars[M]//de Vera J P, Seckbach J Habitability of other planets and satellites. New York: Springer, 2013: 145-162.
[14] Lopez-Ramirez M R, Sancho L G, de Vera J P, et al. Detection of new biohints on lichens with Raman spectroscopy after space- and Mars like conditions exposure: Mission Ground Reference(MGR) samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 120046.
[15] Poch O, Noblet A, Stalport F, et al. Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the "Mars organic molecule irradiation and evolution" (MOMIE) setup [J]. Planetary and Space Science, 2013, 85: 188-197.
[16] Galletta G, D'Alessandro M, Bertoloni G, et al. Surviving on Mars: Test with LISA simulator[J]. Proceedings of the International Astronomical Union, 2009, 5(H15): 686-687.
[17] Jensen L L, Merrison J, Hansen A A, et al. A facility for long-term Mars simulation experiments: The Mars Environmental Simulation Chamber (MESCH) [J]. Astrobiology, 2008, 8(3): 537-548.
[18] Czaplinski E C, Gilbertson W A, Farnsworth K K, et al. Experimental study of ethylene evaporites under Titan conditions[J]. Acs Earth and Space Chemistry, 2019, 3(10): 2353-2362.
[19] Mateo-Marti E, Prieto-Ballesteros O, Muñoz Caro G, et al. Characterizing interstellar medium, Planetary surface and deep environments by spectroscopic techniques using unique simulation Chambers at centro de astrobiologia (CAB)[J]. Life-Basel, 2019, 9(3): 72.
[20] Mateo-Marti E, Prieto-Ballesteros O, Sobrado J M, et al. A chamber for studying planetary environments and its applications to astrobiology[J]. Measurement Science and Technology, 2006, 17(8): 2274-2280.
[21] Ten Kate I L, Reuver M. PALLAS: Planetary analogues laboratory for light, atmosphere, and surface simulations[J]. Netherlands Journal of Geosciences-Geologie En Mijnbouw, 2016, 95(2): 183-189.
[22] Martin D, Cockell C S. PELS (Planetary Environmental Liquid Simulator): A new type of simulation facility to study extraterrestrial aqueous environments[J]. Astrobiology, 2015, 15(2): 111-118.
[23] Wu Z C, Ling Z C, Zhang J, et al. A Mars environment chamber coupled with multiple in situ spectral sensors for Mars exploration[J]. Sensors, 2021, 21(7): 2519.
[24] Zhao Y Y S, McLennan S M, Jackson W A, et al. Photochemical controls on chlorine and bromine geochemistry at the Martian surface[J]. Earth and Planetary Science Letters, 2018, 497: 102-112.
[25] Cui Z C, Jia L C, Li L N, et al. A laser-induced breakdown spectroscopy experiment platform for high-degree simulation of MarSCoDe in situ detection on Mars[J]. Remote Sensing, 2022, 14(9): 1954.
[26] Barlow N. Mars: An introduction to its interior, surface and atmosphere[M]. New York: Cambridge University Press, 2008.
[27] Morschhauser A, Lesur V, Grott M. A spherical harmonic model of the lithospheric magnetic field of Mars[J]. Journal of Geophysical Research-Planets, 2014, 119(6): 1162-1188.
[28] Dartnell L R, Desorgher L, Ward J M, et al. Martian sub-surface ionising radiation: Biosignatures and geology[J]. Biogeosciences, 2007, 4(4): 545-558.
[29] Voosen P. NASA's Perseverance rover aims to find out whether ancient Mars was warm and wet or cold and dry [J]. Science, 2020, 368(6498): 1416-1421.
[30] Liu J J, Li C L, Zhang R Q, et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2022, 6(1): 65-71.
[31] Cortesão M, Fuchs F M, Commichau F M, et al. Bacillus subtilis spore resistance to simulated Mars surface conditions[J]. Frontiers in Microbiology, 2019, 10: 333.
[32] Schuerger A C, Clausen C, Britt D. Methane evolution from UV-irradiated spacecraft materials under simulated martian conditions: Implications for the Mars Science Laboratory (MSL) mission[J]. Icarus, 2011, 213(1): 393-403.
[33] Hintze P E, Buhler C R, Schuerger A C, et al. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions[J]. Icarus, 2010, 208(2): 749-757.
[34] Patel M R, Miljkovic K, Ringrose T J, et al. The hypervelocity impact facility and environmental simulation at the Open University[C]//European Planetary Science Congress. Rome: EPSC, 2010: 655.
[35] Brož P, Kryza O, Conway S J, et al. Mud flow levitation on Mars: Insights from laboratory simulations[J]. Earth and Planetary Science Letters, 2020, 545: 116406.
[36] Kapitulčinová D, Cockell C S, Patel M, et al. The interlayer regions of sheet silicates as a favorable habitat for endolithic microorganisms[J]. Geomicrobiology Journal, 2015, 32(6): 530-537.
[37] de la Torre Noetzel R, Miller A Z, de la Rosa J M, et al. Cellular responses of the lichen Circinaria gyrosa in Mars-like conditions[J]. Frontiers in Microbiology, 2018, 9: 308.
[38] Poch O, Jaber M, Stalport F, et al. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions[J]. Astrobiology, 2015, 15(3): 221-237.
[39] Stalport F, Rouquette L, Poch O, et al. The photochemistry on space station (PSS) experiment: Organic matter under Mars-like surface UV radiation conditions in low Earth orbit[J]. Astrobiology, 2019, 19(8): 1037-1052.
[40] Rouquette L, Stalport F, Cottin H, et al. Dimerization of uracil in a simulated Mars-like UV radiation environment[J]. Astrobiology, 2020, 20(11): 1363-1376.
[41] Galletta G, Ferri F, Fanti G, et al. S.A.M., the Italian martian simulation chamber[J]. Origins of Life and Evolution of the Biosphere, 2006, 36(5): 625-627.
[42] Hansen A A, Jensen L L, Kristoffersen T, et al. Effects of long-term simulated martian conditions on a freeze dried and homogenized bacterial permafrost community [J]. Astrobiology, 2009, 9(2): 229-240.
[43] Wu Z C, Wang A L, Ling Z C. Spectroscopic study of perchlorates and other oxygen chlorides in a Martian environmental chamber[J]. Earth and Planetary Science Letters, 2016, 452: 123-132.
[44] Wang A, Yan Y C, Jolliff B L, et al. Chlorine release from common chlorides by Martian dust activity[J]. Journal of Geophysical Research-Planets, 2020, 125(6): e2019JE006283.
[45] Mao W S, Fu X H, Wu Z C, et al. The color centers in halite induced by Martian dust activities[J]. Earth and Planetary Science Letters, 2022, 578: 117302.
[46] Zhou D S, Zhao Y Y S, Qi C, et al. Experimental constraints on iron-rich olivine weathering under Mars atmosphere[J]. LPI Contributions, 2022, 2678: 1908.
[47] Wang X Y, Zhou D S, Zhao Y Y S, et al. Evaporation of Fe (II)-and Fe (III)-sulfate brines under CO2 and ultraviolet light: Implications for Fe redox and Fe mineral assemblages on mars[C]//50th Annual Lunar and Planetary Science Conference, Houston: Lunar and Planetary Institute, 2019: 3275.
[48] Qu S Y, Zhao Y Y S, Cui H, et al. Preferential formation of chlorate over perchlorate on Mars controlled by iron mineralogy[J]. Nature Astronomy, 2022, 6(4): 436-441.
[49] Gan H, Li X Y, Wei G F, et al. Work function measurements of olivine: Implication to photoemission charging properties in planetary environments[J]. Advances in Space Research, 2015, 56(11): 2432-2438.
[50] Zhao Y Y S, Li X Y, Tang H, et al. Experimental simulations to understand the lunar and martian surficial processes[C]//AGU Fall Meeting Abstracts, San Francisco: American Geophysical Union, 2016: P23A-2164.
[51] 陈安然, 张立海, 臧建伯, 等. 稳压CO2气体氛围火星环境模拟试验系统设计[J]. 航天器环境工程, 2019, 36 (4): 398-402.
[52] Preston L J, Dartnell L R. Planetary habitability: Lessons learned from terrestrial analogues[J]. International Journal of Astrobiology, 2014, 13(1): 81-98.
[53] Wasiak F C, Luspay-Kuti A, Welivitiya W, et al. A facility for simulating Titan's environment[J]. Advances in Space Research, 2013, 51(7): 1213-1220.
[54] Czaplinski E, Yu X, Dzurilla K, et al. Experimental investigation of the acetylene-benzene cocrystal on Titan[J]. The Planetary Science Journal, 2020, 1(3): 76.
[55] Mateo-Marti E, Galvez-Martinez S, Gil-Lozano C, et al. Pyrite-induced UV-photocatalytic abiotic nitrogen fixation: Implications for early atmospheres and life[J]. Scientific Reports, 2019, 9: 15311.
[56] Sanchez-Arenillas M, Galvez-Martinez S, Mateo-Marti E. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role[J]. Applied Surface Science, 2017, 414: 303-312.
[57] Fornaro T, Boosman A, Brucato J R, et al. UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: Hints for life detection on Mars[J]. Icarus, 2018, 313: 38-60.
[58] Wadsworth J, Cockell C S. Perchlorates on Mars enhance the bacteriocidal effects of UV light[J]. Scientific Reports, 2017, 7: 4662.
[59] 林杨挺. 探索火星环境和生命[J]. 自然, 2016, 38(1): 1-7.
[60] Green T G A, Sancho L G, Turk R, et al. High diversity of lichens at 84 degrees S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica[J]. Polar Biology, 2011, 34(8): 1211-1220.
[61] Nguyen K H, Chollet-Krugler M, Gouault N, et al. UV-protectant metabolites from lichens and their symbiotic partners[J]. Natural Product Reports, 2013, 30(12): 1490-1508.
[62] Stamenković V, Ward L M, Mischna M, et al. O2 solubility in Martian near-surface environments and implications for aerobic life[J]. Nature Geoscience, 2018, 11(12): 905-909.
[63] Webster C R, Mahaffy P R, Atreya S K, et al. Background levels of methane in Mars' atmosphere show strong seasonal variations[J]. Science, 2018, 360(6393): 1093-1096.
[64] Krasnopolsky V A, Maillard J P, Owen T C. Detection of methane in the martian atmosphere: Evidence for life[J]. Icarus, 2004, 172(2): 537-547.
[65] Maus D, Heinz J, Schirmack J, et al. Methanogenic archaea can produce methane in deliquescence-driven Mars analog environments[J]. Scientific Reports, 2020, 10(1): 6.
[66] Anderson D M, Biemann K, Orgel L E, et al. Mass spectrometric analysis of organic compounds, water and volatile constituents in the atmosphere and surface of Mars: The Viking Mars lander[J]. Icarus, 1972, 16(1): 111-138.
[67] He Y Y, Buch A, Szopa C, et al. The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments[J]. TrAC Trends in Analytical Chemistry, 2020, 127: 115896.
[68] Goesmann F, Brinckerhoff W B, Raulin F, et al. The Mars organic molecule analyzer(MOMA) instrument:Characterization of organic material in martian sediments [J]. Astrobiology, 2017, 17(6-7): 655-685.
[69] Poch O, Kaci S, Stalport F, et al. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions[J]. Icarus, 2014, 242: 50-63.
[70] Noblet A, Stalport F, Guan Y Y, et al. The PROCESS experiment: Amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit[J]. Astrobiology, 2012, 12(5): 436-444.
[71] Maggiori C, Stromberg J, Blanco Y, et al. The limits, capabilities, and potential for life detection with MinION sequencing in a paleochannel Mars analog[J]. Astrobiology, 2020, 20(3): 375-393.
[72] Garcia-Descalzo L, Parro V, Garcia-Villadangos M, et al. Microbial markers profile in anaerobic Mars analogue environments using the LDChip (Life Detector Chip) antibody microarray core of the SOLID (Signs of Life Detector) Platform[J]. Microorganisms, 2019, 7(9): 365.
[73] Stoks P G, Schwartz A W. Uracil in carbonaceous meteorites[J]. Nature, 1979, 282(5740): 709-710.
[74] Martins Z, Botta O, Fogel M L, et al. Extraterrestrial nucleobases in the Murchison meteorite[J]. Earth and Planetary Science Letters, 2008, 270(1-2): 130-136.
[75] Nuevo M, Chen Y J, Hu W J, et al. Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons[J]. Astrobiology, 2014, 14(2): 119-131.
[76] Georgiou C D, Sun H J, McKay C P, et al. Evidence for photochemical production of reactive oxygen species in desert soils[J]. Nature Communications, 2015, 6(1): 7100.
[77] Carrier B L, Beaty D W, Meyer M A, et al. Mars extant life: What's next[J]. Astrobiology, 2020, 20(6): 785-814.