Special to S&T Review

Applications of planetary environment simulation facilities in astrobiology

  • KANG Mengling ,
  • HE Yuanyuan ,
  • SHEN Jianxun ,
  • ZHAO Yuyan ,
  • PAN Yongxin ,
  • LIN Wei
Expand
  • 1. Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
    3. Institute of Mineralogy, Physics of Materials and Cosmochemistry, National Museum of Natural History & Sorbonne University; French National Centre for Scientific Research, Paris 75005, France
    4. Process Engineering and Materials Laboratory, Centralesupelec, Paris-saclay University, Gif-Sur-Yvette, Paris 91190, France
    5. Center for Lunar and Planetary Sciences, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
    6. Center for Excellence in Comparative Planetology, University of Chinese Academy of Sciences, Hefei 230026, China

Received date: 2022-06-07

  Revised date: 2022-09-19

  Online published: 2023-05-22

Abstract

With the rapid development of planetary science and deep space exploration, astrobiology has been turned into a crucial frontier discipline. Artificial space analogs manipulated by simulation facilities are powerful tools for astrobiological research. Laboratory-based planetary environment simulation serves as an important complement to remote sensing and in-situ detection, providing indispensable support for planetary science research. This paper reviews several representative planetary environment simulation facilities, including their functional designs and astrobiological experiments. They have been proven to be promising and useful for studies of extraterrestrial life signal detection and life adaptation strategies under Mars-like extreme conditions. Last but not least, a practical outlook on the future development and scientific research of planetary environment simulation devices are further discussed.

Cite this article

KANG Mengling , HE Yuanyuan , SHEN Jianxun , ZHAO Yuyan , PAN Yongxin , LIN Wei . Applications of planetary environment simulation facilities in astrobiology[J]. Science & Technology Review, 2023 , 41(8) : 6 -16 . DOI: 10.3981/j.issn.1000-7857.2023.08.001

References

[1] 林巍, 李一良, 王高鸿, 等. 天体生物学研究进展和发展趋势[J]. 科学通报, 2020, 65(5): 380-391.
[2] Liu J, Zhang W S, He K, et al. Survival of the magnetotactic bacterium Magnetospirillum gryphiswaldense exposed to Earth's lower near space[J]. Science Bulletin, 2022, doi: 10.1016/j.scib.2022.03.005.
[3] 林巍 . 临近空间生物研究及其天体生物学意义[J]. 科学通报, 2020, 65(14): 1297-1304.
[4] Shen J X, Wyness A J, Claire M W, et al. Spatial variability of microbial communities and salt distributions across a latitudinal aridity gradient in the Atacama Desert[J]. Microbial Ecology, 2021, 82(2): 442-458.
[5] Navarro-Gonzalez R, Rainey F A, Molina P, et al. Mars like soils in the Atacama Desert, Chile, and the dry limit of microbial life[J]. Science, 2003, 302(5647): 1018-1021.
[6] Anglés A, Li Y L. The western Qaidam Basin as a potential Martian environmental analogue: An overview[J]. Journal of Geophysical Research-Planets, 2017, 122(5): 856-888.
[7] Xiao L, Wang J, Dang Y N, et al. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China) [J]. Earth-Science Reviews, 2017, 164: 84-101.
[8] Martins Z, Cottin H, Kotler J M, et al. Earth as a tool for astrobiology—A European perspective[J]. Space Science Reviews, 2017, 209(1): 43-81.
[9] Schuerger A C, Fajardo-Cavazos P, Clausen C A, et al. Slow degradation of ATP in simulated martian environments suggests long residence times for the biosignature molecule on spacecraft surfaces on Mars[J]. Icarus, 2008, 194(1): 86-100.
[10] Godin P J, Schuerger A C, Moores J E. Salt tolerance and UV protection of Bacillus subtilis and Enterococcus faecalis under simulated martian conditions[J]. Astrobiology, 2021, 21(4): 394-404.
[11] dos Santos R, Patel M, Cuadros J, et al. Influence of mineralogy on the preservation of amino acids under simulated Mars conditions[J]. Icarus, 2016, 277: 342-353.
[12] Dartnell L R, Patel M R. Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars[J]. International Journal of Astrobiology, 2014, 13(2): 112-123.
[13] Lorek A, Koncz A. Simulation and measurement of extraterrestrial conditions for experiments on habitability with respect to Mars[M]//de Vera J P, Seckbach J Habitability of other planets and satellites. New York: Springer, 2013: 145-162.
[14] Lopez-Ramirez M R, Sancho L G, de Vera J P, et al. Detection of new biohints on lichens with Raman spectroscopy after space- and Mars like conditions exposure: Mission Ground Reference(MGR) samples[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 261: 120046.
[15] Poch O, Noblet A, Stalport F, et al. Chemical evolution of organic molecules under Mars-like UV radiation conditions simulated in the laboratory with the "Mars organic molecule irradiation and evolution" (MOMIE) setup [J]. Planetary and Space Science, 2013, 85: 188-197.
[16] Galletta G, D'Alessandro M, Bertoloni G, et al. Surviving on Mars: Test with LISA simulator[J]. Proceedings of the International Astronomical Union, 2009, 5(H15): 686-687.
[17] Jensen L L, Merrison J, Hansen A A, et al. A facility for long-term Mars simulation experiments: The Mars Environmental Simulation Chamber (MESCH) [J]. Astrobiology, 2008, 8(3): 537-548.
[18] Czaplinski E C, Gilbertson W A, Farnsworth K K, et al. Experimental study of ethylene evaporites under Titan conditions[J]. Acs Earth and Space Chemistry, 2019, 3(10): 2353-2362.
[19] Mateo-Marti E, Prieto-Ballesteros O, Muñoz Caro G, et al. Characterizing interstellar medium, Planetary surface and deep environments by spectroscopic techniques using unique simulation Chambers at centro de astrobiologia (CAB)[J]. Life-Basel, 2019, 9(3): 72.
[20] Mateo-Marti E, Prieto-Ballesteros O, Sobrado J M, et al. A chamber for studying planetary environments and its applications to astrobiology[J]. Measurement Science and Technology, 2006, 17(8): 2274-2280.
[21] Ten Kate I L, Reuver M. PALLAS: Planetary analogues laboratory for light, atmosphere, and surface simulations[J]. Netherlands Journal of Geosciences-Geologie En Mijnbouw, 2016, 95(2): 183-189.
[22] Martin D, Cockell C S. PELS (Planetary Environmental Liquid Simulator): A new type of simulation facility to study extraterrestrial aqueous environments[J]. Astrobiology, 2015, 15(2): 111-118.
[23] Wu Z C, Ling Z C, Zhang J, et al. A Mars environment chamber coupled with multiple in situ spectral sensors for Mars exploration[J]. Sensors, 2021, 21(7): 2519.
[24] Zhao Y Y S, McLennan S M, Jackson W A, et al. Photochemical controls on chlorine and bromine geochemistry at the Martian surface[J]. Earth and Planetary Science Letters, 2018, 497: 102-112.
[25] Cui Z C, Jia L C, Li L N, et al. A laser-induced breakdown spectroscopy experiment platform for high-degree simulation of MarSCoDe in situ detection on Mars[J]. Remote Sensing, 2022, 14(9): 1954.
[26] Barlow N. Mars: An introduction to its interior, surface and atmosphere[M]. New York: Cambridge University Press, 2008.
[27] Morschhauser A, Lesur V, Grott M. A spherical harmonic model of the lithospheric magnetic field of Mars[J]. Journal of Geophysical Research-Planets, 2014, 119(6): 1162-1188.
[28] Dartnell L R, Desorgher L, Ward J M, et al. Martian sub-surface ionising radiation: Biosignatures and geology[J]. Biogeosciences, 2007, 4(4): 545-558.
[29] Voosen P. NASA's Perseverance rover aims to find out whether ancient Mars was warm and wet or cold and dry [J]. Science, 2020, 368(6498): 1416-1421.
[30] Liu J J, Li C L, Zhang R Q, et al. Geomorphic contexts and science focus of the Zhurong landing site on Mars[J]. Nature Astronomy, 2022, 6(1): 65-71.
[31] Cortesão M, Fuchs F M, Commichau F M, et al. Bacillus subtilis spore resistance to simulated Mars surface conditions[J]. Frontiers in Microbiology, 2019, 10: 333.
[32] Schuerger A C, Clausen C, Britt D. Methane evolution from UV-irradiated spacecraft materials under simulated martian conditions: Implications for the Mars Science Laboratory (MSL) mission[J]. Icarus, 2011, 213(1): 393-403.
[33] Hintze P E, Buhler C R, Schuerger A C, et al. Alteration of five organic compounds by glow discharge plasma and UV light under simulated Mars conditions[J]. Icarus, 2010, 208(2): 749-757.
[34] Patel M R, Miljkovic K, Ringrose T J, et al. The hypervelocity impact facility and environmental simulation at the Open University[C]//European Planetary Science Congress. Rome: EPSC, 2010: 655.
[35] Brož P, Kryza O, Conway S J, et al. Mud flow levitation on Mars: Insights from laboratory simulations[J]. Earth and Planetary Science Letters, 2020, 545: 116406.
[36] Kapitulčinová D, Cockell C S, Patel M, et al. The interlayer regions of sheet silicates as a favorable habitat for endolithic microorganisms[J]. Geomicrobiology Journal, 2015, 32(6): 530-537.
[37] de la Torre Noetzel R, Miller A Z, de la Rosa J M, et al. Cellular responses of the lichen Circinaria gyrosa in Mars-like conditions[J]. Frontiers in Microbiology, 2018, 9: 308.
[38] Poch O, Jaber M, Stalport F, et al. Effect of nontronite smectite clay on the chemical evolution of several organic molecules under simulated martian surface ultraviolet radiation conditions[J]. Astrobiology, 2015, 15(3): 221-237.
[39] Stalport F, Rouquette L, Poch O, et al. The photochemistry on space station (PSS) experiment: Organic matter under Mars-like surface UV radiation conditions in low Earth orbit[J]. Astrobiology, 2019, 19(8): 1037-1052.
[40] Rouquette L, Stalport F, Cottin H, et al. Dimerization of uracil in a simulated Mars-like UV radiation environment[J]. Astrobiology, 2020, 20(11): 1363-1376.
[41] Galletta G, Ferri F, Fanti G, et al. S.A.M., the Italian martian simulation chamber[J]. Origins of Life and Evolution of the Biosphere, 2006, 36(5): 625-627.
[42] Hansen A A, Jensen L L, Kristoffersen T, et al. Effects of long-term simulated martian conditions on a freeze dried and homogenized bacterial permafrost community [J]. Astrobiology, 2009, 9(2): 229-240.
[43] Wu Z C, Wang A L, Ling Z C. Spectroscopic study of perchlorates and other oxygen chlorides in a Martian environmental chamber[J]. Earth and Planetary Science Letters, 2016, 452: 123-132.
[44] Wang A, Yan Y C, Jolliff B L, et al. Chlorine release from common chlorides by Martian dust activity[J]. Journal of Geophysical Research-Planets, 2020, 125(6): e2019JE006283.
[45] Mao W S, Fu X H, Wu Z C, et al. The color centers in halite induced by Martian dust activities[J]. Earth and Planetary Science Letters, 2022, 578: 117302.
[46] Zhou D S, Zhao Y Y S, Qi C, et al. Experimental constraints on iron-rich olivine weathering under Mars atmosphere[J]. LPI Contributions, 2022, 2678: 1908.
[47] Wang X Y, Zhou D S, Zhao Y Y S, et al. Evaporation of Fe (II)-and Fe (III)-sulfate brines under CO2 and ultraviolet light: Implications for Fe redox and Fe mineral assemblages on mars[C]//50th Annual Lunar and Planetary Science Conference, Houston: Lunar and Planetary Institute, 2019: 3275.
[48] Qu S Y, Zhao Y Y S, Cui H, et al. Preferential formation of chlorate over perchlorate on Mars controlled by iron mineralogy[J]. Nature Astronomy, 2022, 6(4): 436-441.
[49] Gan H, Li X Y, Wei G F, et al. Work function measurements of olivine: Implication to photoemission charging properties in planetary environments[J]. Advances in Space Research, 2015, 56(11): 2432-2438.
[50] Zhao Y Y S, Li X Y, Tang H, et al. Experimental simulations to understand the lunar and martian surficial processes[C]//AGU Fall Meeting Abstracts, San Francisco: American Geophysical Union, 2016: P23A-2164.
[51] 陈安然, 张立海, 臧建伯, 等. 稳压CO2气体氛围火星环境模拟试验系统设计[J]. 航天器环境工程, 2019, 36 (4): 398-402.
[52] Preston L J, Dartnell L R. Planetary habitability: Lessons learned from terrestrial analogues[J]. International Journal of Astrobiology, 2014, 13(1): 81-98.
[53] Wasiak F C, Luspay-Kuti A, Welivitiya W, et al. A facility for simulating Titan's environment[J]. Advances in Space Research, 2013, 51(7): 1213-1220.
[54] Czaplinski E, Yu X, Dzurilla K, et al. Experimental investigation of the acetylene-benzene cocrystal on Titan[J]. The Planetary Science Journal, 2020, 1(3): 76.
[55] Mateo-Marti E, Galvez-Martinez S, Gil-Lozano C, et al. Pyrite-induced UV-photocatalytic abiotic nitrogen fixation: Implications for early atmospheres and life[J]. Scientific Reports, 2019, 9: 15311.
[56] Sanchez-Arenillas M, Galvez-Martinez S, Mateo-Marti E. Sulfur amino acids and alanine on pyrite (100) by X-ray photoemission spectroscopy: Surface or molecular role[J]. Applied Surface Science, 2017, 414: 303-312.
[57] Fornaro T, Boosman A, Brucato J R, et al. UV irradiation of biomarkers adsorbed on minerals under Martian-like conditions: Hints for life detection on Mars[J]. Icarus, 2018, 313: 38-60.
[58] Wadsworth J, Cockell C S. Perchlorates on Mars enhance the bacteriocidal effects of UV light[J]. Scientific Reports, 2017, 7: 4662.
[59] 林杨挺. 探索火星环境和生命[J]. 自然, 2016, 38(1): 1-7.
[60] Green T G A, Sancho L G, Turk R, et al. High diversity of lichens at 84 degrees S, Queen Maud Mountains, suggests preglacial survival of species in the Ross Sea region, Antarctica[J]. Polar Biology, 2011, 34(8): 1211-1220.
[61] Nguyen K H, Chollet-Krugler M, Gouault N, et al. UV-protectant metabolites from lichens and their symbiotic partners[J]. Natural Product Reports, 2013, 30(12): 1490-1508.
[62] Stamenković V, Ward L M, Mischna M, et al. O2 solubility in Martian near-surface environments and implications for aerobic life[J]. Nature Geoscience, 2018, 11(12): 905-909. 
[63] Webster C R, Mahaffy P R, Atreya S K, et al. Background levels of methane in Mars' atmosphere show strong seasonal variations[J]. Science, 2018, 360(6393): 1093-1096.
[64] Krasnopolsky V A, Maillard J P, Owen T C. Detection of methane in the martian atmosphere: Evidence for life[J]. Icarus, 2004, 172(2): 537-547.
[65] Maus D, Heinz J, Schirmack J, et al. Methanogenic archaea can produce methane in deliquescence-driven Mars analog environments[J]. Scientific Reports, 2020, 10(1): 6.
[66] Anderson D M, Biemann K, Orgel L E, et al. Mass spectrometric analysis of organic compounds, water and volatile constituents in the atmosphere and surface of Mars: The Viking Mars lander[J]. Icarus, 1972, 16(1): 111-138.
[67] He Y Y, Buch A, Szopa C, et al. The search for organic compounds with TMAH thermochemolysis: From Earth analyses to space exploration experiments[J]. TrAC Trends in Analytical Chemistry, 2020, 127: 115896.
[68] Goesmann F, Brinckerhoff W B, Raulin F, et al. The Mars organic molecule analyzer(MOMA) instrument:Characterization of organic material in martian sediments [J]. Astrobiology, 2017, 17(6-7): 655-685.
[69] Poch O, Kaci S, Stalport F, et al. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions[J]. Icarus, 2014, 242: 50-63.
[70] Noblet A, Stalport F, Guan Y Y, et al. The PROCESS experiment: Amino and carboxylic acids under Mars-like surface UV radiation conditions in low-earth orbit[J]. Astrobiology, 2012, 12(5): 436-444.
[71] Maggiori C, Stromberg J, Blanco Y, et al. The limits, capabilities, and potential for life detection with MinION sequencing in a paleochannel Mars analog[J]. Astrobiology, 2020, 20(3): 375-393.
[72] Garcia-Descalzo L, Parro V, Garcia-Villadangos M, et al. Microbial markers profile in anaerobic Mars analogue environments using the LDChip (Life Detector Chip) antibody microarray core of the SOLID (Signs of Life Detector) Platform[J]. Microorganisms, 2019, 7(9): 365.
[73] Stoks P G, Schwartz A W. Uracil in carbonaceous meteorites[J]. Nature, 1979, 282(5740): 709-710.
[74] Martins Z, Botta O, Fogel M L, et al. Extraterrestrial nucleobases in the Murchison meteorite[J]. Earth and Planetary Science Letters, 2008, 270(1-2): 130-136.
[75] Nuevo M, Chen Y J, Hu W J, et al. Irradiation of pyrimidine in pure H2O ice with high-energy ultraviolet photons[J]. Astrobiology, 2014, 14(2): 119-131.
[76] Georgiou C D, Sun H J, McKay C P, et al. Evidence for photochemical production of reactive oxygen species in desert soils[J]. Nature Communications, 2015, 6(1): 7100.
[77] Carrier B L, Beaty D W, Meyer M A, et al. Mars extant life: What's next[J]. Astrobiology, 2020, 20(6): 785-814.
Outlines

/